gautamtata
commited on
Commit
·
38c2b04
1
Parent(s):
d415c99
Create handler.py
Browse files- handler.py +55 -0
handler.py
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torchaudio
|
2 |
+
import torch
|
3 |
+
from transformers import Wav2Vec2Processor, Wav2Vec2ForSpeechClassification, AutoConfig
|
4 |
+
from torch.nn.functional import softmax
|
5 |
+
from typing import Dict, List, Any
|
6 |
+
|
7 |
+
# Suppose this handler is for a speech classification model
|
8 |
+
class EndpointHandler():
|
9 |
+
def __init__(self, path="."):
|
10 |
+
# Assuming that the path contains all the necessary files for model and processor.
|
11 |
+
config = AutoConfig.from_pretrained(path)
|
12 |
+
self.processor = Wav2Vec2Processor.from_pretrained(path)
|
13 |
+
self.model = Wav2Vec2ForSpeechClassification.from_pretrained(path)
|
14 |
+
self.sampling_rate = self.processor.feature_extractor.sampling_rate
|
15 |
+
self.model.to('cuda' if torch.cuda.is_available() else 'cpu')
|
16 |
+
|
17 |
+
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
|
18 |
+
"""
|
19 |
+
Overriding call method to handle speech input and return classification result.
|
20 |
+
"""
|
21 |
+
# Extract 'inputs' key from the data dictionary. This should be a path to the audio file.
|
22 |
+
audio_path = data.get('inputs', None)
|
23 |
+
if audio_path is None:
|
24 |
+
raise ValueError("Invalid input, 'inputs' key with path to the audio file is required.")
|
25 |
+
|
26 |
+
# Load and preprocess the audio file, and run prediction
|
27 |
+
outputs = self.predict(audio_path)
|
28 |
+
return outputs
|
29 |
+
|
30 |
+
def predict(self, path):
|
31 |
+
"""
|
32 |
+
Runs prediction on the provided audio file path.
|
33 |
+
"""
|
34 |
+
# Load audio file
|
35 |
+
speech_array, _sampling_rate = torchaudio.load(path)
|
36 |
+
# Resample if necessary
|
37 |
+
if _sampling_rate != self.sampling_rate:
|
38 |
+
resampler = torchaudio.transforms.Resample(_sampling_rate, self.sampling_rate)
|
39 |
+
speech_array = resampler(speech_array)
|
40 |
+
speech_array = speech_array.squeeze().numpy()
|
41 |
+
|
42 |
+
# Preprocess audio input
|
43 |
+
inputs = self.processor(speech_array, sampling_rate=self.sampling_rate, return_tensors="pt", padding=True)
|
44 |
+
input_values = inputs.input_values.to('cuda' if torch.cuda.is_available() else 'cpu')
|
45 |
+
attention_mask = inputs.attention_mask.to('cuda' if torch.cuda.is_available() else 'cpu')
|
46 |
+
|
47 |
+
# Model inference
|
48 |
+
with torch.no_grad():
|
49 |
+
logits = self.model(input_values, attention_mask=attention_mask).logits
|
50 |
+
|
51 |
+
# Postprocessing
|
52 |
+
scores = softmax(logits, dim=1).detach().cpu().numpy()[0]
|
53 |
+
predictions = [{"label": self.config.id2label[i], "score": float(score)} for i, score in enumerate(scores)]
|
54 |
+
return predictions
|
55 |
+
|