|
from transformers import AutoConfig, Wav2Vec2Processor |
|
from torch import nn |
|
import torch |
|
import torchaudio |
|
import torch.nn.functional as F |
|
from typing import Dict, List, Any |
|
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss |
|
|
|
from transformers.models.wav2vec2.modeling_wav2vec2 import ( |
|
Wav2Vec2PreTrainedModel, |
|
Wav2Vec2Model |
|
) |
|
|
|
|
|
class Wav2Vec2ClassificationHead(nn.Module): |
|
"""Head for wav2vec classification task.""" |
|
|
|
def __init__(self, config): |
|
super().__init__() |
|
self.dense = nn.Linear(config.hidden_size, config.hidden_size) |
|
self.dropout = nn.Dropout(config.final_dropout) |
|
self.out_proj = nn.Linear(config.hidden_size, config.num_labels) |
|
|
|
def forward(self, features, **kwargs): |
|
x = features |
|
x = self.dropout(x) |
|
x = self.dense(x) |
|
x = torch.tanh(x) |
|
x = self.dropout(x) |
|
x = self.out_proj(x) |
|
return x |
|
|
|
|
|
class Wav2Vec2ForSpeechClassification(Wav2Vec2PreTrainedModel): |
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.num_labels = config.num_labels |
|
self.pooling_mode = config.pooling_mode |
|
self.config = config |
|
|
|
self.wav2vec2 = Wav2Vec2Model(config) |
|
self.classifier = Wav2Vec2ClassificationHead(config) |
|
|
|
self.init_weights() |
|
|
|
def freeze_feature_extractor(self): |
|
self.wav2vec2.feature_extractor._freeze_parameters() |
|
|
|
def merged_strategy( |
|
self, |
|
hidden_states, |
|
mode="mean" |
|
): |
|
if mode == "mean": |
|
outputs = torch.mean(hidden_states, dim=1) |
|
elif mode == "sum": |
|
outputs = torch.sum(hidden_states, dim=1) |
|
elif mode == "max": |
|
outputs = torch.max(hidden_states, dim=1)[0] |
|
else: |
|
raise Exception( |
|
"The pooling method hasn't been defined! Your pooling mode must be one of these ['mean', 'sum', 'max']") |
|
|
|
return outputs |
|
|
|
def forward( |
|
self, |
|
input_values, |
|
attention_mask=None, |
|
output_attentions=None, |
|
output_hidden_states=None, |
|
return_dict=None, |
|
labels=None, |
|
): |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
outputs = self.wav2vec2( |
|
input_values, |
|
attention_mask=attention_mask, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
hidden_states = outputs[0] |
|
hidden_states = self.merged_strategy(hidden_states, mode=self.pooling_mode) |
|
logits = self.classifier(hidden_states) |
|
|
|
loss = None |
|
if labels is not None: |
|
if self.config.problem_type is None: |
|
if self.num_labels == 1: |
|
self.config.problem_type = "regression" |
|
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): |
|
self.config.problem_type = "single_label_classification" |
|
else: |
|
self.config.problem_type = "multi_label_classification" |
|
|
|
if self.config.problem_type == "regression": |
|
loss_fct = MSELoss() |
|
loss = loss_fct(logits.view(-1, self.num_labels), labels) |
|
elif self.config.problem_type == "single_label_classification": |
|
loss_fct = CrossEntropyLoss() |
|
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) |
|
elif self.config.problem_type == "multi_label_classification": |
|
loss_fct = BCEWithLogitsLoss() |
|
loss = loss_fct(logits, labels) |
|
|
|
if not return_dict: |
|
output = (logits,) + outputs[2:] |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return SpeechClassifierOutput( |
|
loss=loss, |
|
logits=logits, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
|
|
class EndpointHandler(): |
|
def __init__(self, model_path=""): |
|
|
|
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
self.config = AutoConfig.from_pretrained(f"{model_path}/config.json") |
|
self.processor = Wav2Vec2Processor.from_pretrained(model_path) |
|
self.model = Wav2Vec2ForSpeechClassification.from_pretrained(model_path).to(self.device) |
|
|
|
def speech_file_to_array_fn(self, path): |
|
sampling_rate = self.processor.feature_extractor.sampling_rate |
|
speech_array, _sampling_rate = torchaudio.load(path) |
|
resampler = torchaudio.transforms.Resample(_sampling_rate, sampling_rate) |
|
speech = resampler(speech_array).squeeze().numpy() |
|
return speech |
|
|
|
def predict(self, path): |
|
speech = self.speech_file_to_array_fn(path) |
|
features = self.processor(speech, sampling_rate=self.processor.feature_extractor.sampling_rate, |
|
return_tensors="pt", padding=True) |
|
|
|
input_values = features.input_values.to(self.device) |
|
attention_mask = features.attention_mask.to(self.device) |
|
|
|
with torch.no_grad(): |
|
logits = self.model(input_values, attention_mask=attention_mask).logits |
|
scores = F.softmax(logits, dim=1).detach().cpu().numpy()[0] |
|
outputs = [{"label": self.config.id2label[i], "score": score} for i, score in enumerate(scores)] |
|
return outputs |
|
|
|
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]: |
|
""" |
|
The actual method called during inference. Expects data to have a 'path' to the audio file. |
|
""" |
|
|
|
path = data.get("path") |
|
|
|
|
|
if path: |
|
return self.predict(path) |
|
else: |
|
return {"error": "Path to the audio file is required."} |