michal-stefanik
commited on
Commit
•
ac31af3
1
Parent(s):
064f0c5
Update README.md
Browse files
README.md
CHANGED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- exbert
|
4 |
+
- question-answering
|
5 |
+
language:
|
6 |
+
- multilingual
|
7 |
+
- cs
|
8 |
+
- en
|
9 |
+
---
|
10 |
+
|
11 |
+
# XLM RoBERTa for Czech+English Extractive Question Answering
|
12 |
+
|
13 |
+
This is the [XLM-RoBERTa-large](https://huggingface.co/xlm-roberta-large) model with a head for extractive question answering trained on a combination of [English SQuAD 1.1](https://huggingface.co/datasets/squad) and [Czech SQAD 3.0](https://lindat.cz/repository/xmlui/handle/11234/1-3069) Question Answering datasets. For the Czech SQAD 3.0, original contexts (=whole Wikipedia websites) were limited to fit the RoBERTa's context window, excluding ~3% of the samples.
|
14 |
+
|
15 |
+
## Intended uses & limitations
|
16 |
+
|
17 |
+
This model is purposed to extract a segment of a given context that contains an answer to a given question (Extractive Question Answering) in English and Czech.
|
18 |
+
Given the fine-tuning on two languages and a good reported zero-shot cross-lingual applicability of other fine-tuned XLM-RoBERTas, the model will likely work on other languages as well, with a decay in quality.
|
19 |
+
|
20 |
+
Note that despite its size, English SQuAD has a variety of reported biases (see, e.g. [L. Mikula (2022)](https://is.muni.cz/th/adh58/?lang=en), Chap. 4.1).
|
21 |
+
|
22 |
+
## Usage
|
23 |
+
|
24 |
+
Here is how to use this model to answer the question on a given context using 🤗 Transformers in PyTorch:
|
25 |
+
|
26 |
+
```python
|
27 |
+
from transformers import AutoTokenizer, AutoModelForQuestionAnswering
|
28 |
+
|
29 |
+
tokenizer = AutoTokenizer.from_pretrained("gaussalgo/xlm-roberta-large_extractive-QA_en-cs")
|
30 |
+
model = AutoModelForQuestionAnswering.from_pretrained("gaussalgo/xlm-roberta-large_extractive-QA_en-cs")
|
31 |
+
|
32 |
+
context = """
|
33 |
+
Podle slovenského lidového podání byl Juro Jánošík obdařen magickými předměty (kouzelná valaška, čarovný opasek),
|
34 |
+
které mu dodávaly nadpřirozené schopnosti. Okrádal především šlechtice,
|
35 |
+
trestal panské dráby a ze svého lupu vyděloval část pro chudé, tedy bohatým bral a chudým dával.
|
36 |
+
"""
|
37 |
+
question = "Jaké schopnosti daly magické předměty Juro Jánošíkovi?"
|
38 |
+
|
39 |
+
inputs = tokenizer(question, context, return_tensors="pt")
|
40 |
+
outputs = model(**inputs)
|
41 |
+
start_position = outputs.start_logits[0].argmax()
|
42 |
+
end_position = outputs.end_logits[0].argmax()
|
43 |
+
answer_ids = tokenizer.decode(inputs["input_ids"][0][start_position:end_position])
|
44 |
+
|
45 |
+
print("Answer:")
|
46 |
+
print(tokenizer.decode(answer_ids))
|
47 |
+
|
48 |
+
```
|
49 |
+
|
50 |
+
## Training
|
51 |
+
|
52 |
+
The model has been trained using [Adaptor library](https://github.com/gaussalgo/adaptor) v0.1.5, in parallel on both Czech and English data, with the following parameters:
|
53 |
+
|
54 |
+
```python
|
55 |
+
training_arguments = AdaptationArguments(output_dir="train_dir",
|
56 |
+
learning_rate=1e-5,
|
57 |
+
stopping_strategy=StoppingStrategy.ALL_OBJECTIVES_CONVERGED,
|
58 |
+
do_train=True,
|
59 |
+
do_eval=True,
|
60 |
+
warmup_steps=1000,
|
61 |
+
max_steps=100000,
|
62 |
+
gradient_accumulation_steps=30,
|
63 |
+
eval_steps=100,
|
64 |
+
logging_steps=10,
|
65 |
+
save_steps=1000,
|
66 |
+
num_train_epochs=30,
|
67 |
+
evaluation_strategy="steps")
|
68 |
+
```
|
69 |
+
|
70 |
+
You can find the full training script in [train_roberta_extractive_qa.py](train_roberta_extractive_qa.py), reproducible after a specific data preprocessing for Czech SQAD in [parse_czech_squad.py](parse_czech_squad.py)
|