michal-stefanik
commited on
Commit
·
36e28a3
1
Parent(s):
e8fa15d
Upload train_roberta_extractive_qa.py
Browse files- train_roberta_extractive_qa.py +100 -0
train_roberta_extractive_qa.py
ADDED
@@ -0,0 +1,100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# TODO: BEFORE RUNNING: pip install git+https://github.com/gaussalgo/adaptor.git@QA_to_objectives
|
2 |
+
|
3 |
+
from adaptor.objectives.question_answering import ExtractiveQA
|
4 |
+
import json
|
5 |
+
|
6 |
+
from adaptor.adapter import Adapter
|
7 |
+
from adaptor.evaluators.question_answering import BLEUForQA
|
8 |
+
from adaptor.lang_module import LangModule
|
9 |
+
from adaptor.schedules import ParallelSchedule
|
10 |
+
from adaptor.utils import AdaptationArguments, StoppingStrategy
|
11 |
+
|
12 |
+
# custom classes
|
13 |
+
from datasets import load_dataset
|
14 |
+
|
15 |
+
model_name = "bert-base-multilingual-cased"
|
16 |
+
|
17 |
+
lang_module = LangModule(model_name)
|
18 |
+
|
19 |
+
training_arguments = AdaptationArguments(output_dir="train_dir",
|
20 |
+
learning_rate=4e-5,
|
21 |
+
stopping_strategy=StoppingStrategy.ALL_OBJECTIVES_CONVERGED,
|
22 |
+
do_train=True,
|
23 |
+
do_eval=True,
|
24 |
+
warmup_steps=1000,
|
25 |
+
max_steps=100000,
|
26 |
+
gradient_accumulation_steps=1,
|
27 |
+
eval_steps=1,
|
28 |
+
logging_steps=10,
|
29 |
+
save_steps=1000,
|
30 |
+
num_train_epochs=30,
|
31 |
+
evaluation_strategy="steps")
|
32 |
+
|
33 |
+
val_metrics = [BLEUForQA(decides_convergence=True)]
|
34 |
+
|
35 |
+
# get eval and train dataset
|
36 |
+
squad_dataset = json.load(open("data/czech_squad.json"))
|
37 |
+
questions = []
|
38 |
+
contexts = []
|
39 |
+
answers = []
|
40 |
+
skipped = 0
|
41 |
+
|
42 |
+
for i, entry in squad_dataset.items():
|
43 |
+
if entry["answers"]["text"][0] in entry["context"]:
|
44 |
+
# and len(entry["context"]) < 1024: # these are characters, will be automatically truncated from input anyway
|
45 |
+
questions.append(entry["question"])
|
46 |
+
contexts.append(entry["context"])
|
47 |
+
answers.append(entry["answers"]["text"][0])
|
48 |
+
else:
|
49 |
+
skipped += 1
|
50 |
+
|
51 |
+
print("Skipped examples from SQuAD-cs: %s" % skipped)
|
52 |
+
|
53 |
+
train_questions = questions[:-200]
|
54 |
+
val_questions = questions[-200:]
|
55 |
+
|
56 |
+
train_answers = answers[:-200]
|
57 |
+
val_answers = answers[-200:]
|
58 |
+
|
59 |
+
train_context = contexts[:-200]
|
60 |
+
val_context = contexts[-200:]
|
61 |
+
|
62 |
+
# declaration of extractive question answering objective
|
63 |
+
generative_qa_cs = ExtractiveQA(lang_module,
|
64 |
+
texts_or_path=train_questions,
|
65 |
+
text_pair_or_path=train_context,
|
66 |
+
labels_or_path=train_answers,
|
67 |
+
val_texts_or_path=val_questions,
|
68 |
+
val_text_pair_or_path=val_context,
|
69 |
+
val_labels_or_path=val_answers,
|
70 |
+
batch_size=1,
|
71 |
+
val_evaluators=val_metrics,
|
72 |
+
objective_id="SQUAD-cs")
|
73 |
+
|
74 |
+
# english SQuAD
|
75 |
+
squad_en = load_dataset("squad")
|
76 |
+
squad_train = squad_en["train"].filter(lambda entry: len(entry["context"]) < 2000)
|
77 |
+
|
78 |
+
train_contexts_questions_en = ["question: %s context: %s" % (q, c) for q, c in zip(squad_train["question"],
|
79 |
+
squad_train["context"])]
|
80 |
+
val_contexts_questions_en = ["question: %s context: %s" % (q, c) for q, c in zip(squad_en["validation"]["question"],
|
81 |
+
squad_en["validation"]["context"])]
|
82 |
+
train_answers_en = [a["text"][0] for a in squad_train["answers"]]
|
83 |
+
val_answers_en = [a["text"][0] for a in squad_en["validation"]["answers"]]
|
84 |
+
|
85 |
+
generative_qa_en = ExtractiveQA(lang_module,
|
86 |
+
texts_or_path=squad_train["question"],
|
87 |
+
text_pair_or_path=squad_train["context"],
|
88 |
+
labels_or_path=[a["text"][0] for a in squad_train["answers"]],
|
89 |
+
val_texts_or_path=squad_en["validation"]["question"][:200],
|
90 |
+
val_text_pair_or_path=squad_en["validation"]["context"][:200],
|
91 |
+
val_labels_or_path=[a["text"][0] for a in squad_en["validation"]["answers"]][:200],
|
92 |
+
batch_size=10,
|
93 |
+
val_evaluators=val_metrics,
|
94 |
+
objective_id="SQUAD-en")
|
95 |
+
|
96 |
+
schedule = ParallelSchedule(objectives=[generative_qa_cs, generative_qa_en],
|
97 |
+
args=training_arguments)
|
98 |
+
|
99 |
+
adapter = Adapter(lang_module, schedule, args=training_arguments)
|
100 |
+
adapter.train()
|