gaurav1033 commited on
Commit
968d085
·
verified ·
1 Parent(s): f124889

End of training

Browse files
README.md ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ base_model: microsoft/layoutlm-base-uncased
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - funsd
8
+ model-index:
9
+ - name: layoutlm-funsd
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ # layoutlm-funsd
17
+
18
+ This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the funsd dataset.
19
+ It achieves the following results on the evaluation set:
20
+ - Loss: 1.1516
21
+ - Answer: {'precision': 0.38400702987697716, 'recall': 0.5401730531520396, 'f1': 0.44889573703133023, 'number': 809}
22
+ - Header: {'precision': 0.3218390804597701, 'recall': 0.23529411764705882, 'f1': 0.27184466019417475, 'number': 119}
23
+ - Question: {'precision': 0.5132192846034215, 'recall': 0.6197183098591549, 'f1': 0.5614632071458954, 'number': 1065}
24
+ - Overall Precision: 0.4480
25
+ - Overall Recall: 0.5645
26
+ - Overall F1: 0.4996
27
+ - Overall Accuracy: 0.6209
28
+
29
+ ## Model description
30
+
31
+ More information needed
32
+
33
+ ## Intended uses & limitations
34
+
35
+ More information needed
36
+
37
+ ## Training and evaluation data
38
+
39
+ More information needed
40
+
41
+ ## Training procedure
42
+
43
+ ### Training hyperparameters
44
+
45
+ The following hyperparameters were used during training:
46
+ - learning_rate: 3e-05
47
+ - train_batch_size: 16
48
+ - eval_batch_size: 8
49
+ - seed: 42
50
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
51
+ - lr_scheduler_type: linear
52
+ - num_epochs: 15
53
+
54
+ ### Training results
55
+
56
+ | Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
57
+ |:-------------:|:-----:|:----:|:---------------:|:-----------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
58
+ | 1.7219 | 1.0 | 10 | 1.5555 | {'precision': 0.04431137724550898, 'recall': 0.04573547589616811, 'f1': 0.04501216545012165, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.26320501342882724, 'recall': 0.27605633802816903, 'f1': 0.2694775435380385, 'number': 1065} | 0.1696 | 0.1661 | 0.1678 | 0.3589 |
59
+ | 1.4917 | 2.0 | 20 | 1.3323 | {'precision': 0.17622377622377622, 'recall': 0.311495673671199, 'f1': 0.2251004912907548, 'number': 809} | {'precision': 0.1, 'recall': 0.008403361344537815, 'f1': 0.015503875968992248, 'number': 119} | {'precision': 0.29382407985028075, 'recall': 0.4422535211267606, 'f1': 0.3530734632683658, 'number': 1065} | 0.2379 | 0.3633 | 0.2875 | 0.4413 |
60
+ | 1.2799 | 3.0 | 30 | 1.2482 | {'precision': 0.24236517218973358, 'recall': 0.4610630407911001, 'f1': 0.317717206132879, 'number': 809} | {'precision': 0.273972602739726, 'recall': 0.16806722689075632, 'f1': 0.20833333333333331, 'number': 119} | {'precision': 0.35655737704918034, 'recall': 0.4084507042253521, 'f1': 0.38074398249452956, 'number': 1065} | 0.2924 | 0.4155 | 0.3432 | 0.4580 |
61
+ | 1.1477 | 4.0 | 40 | 1.1758 | {'precision': 0.2900516795865633, 'recall': 0.5550061804697157, 'f1': 0.38099278744166315, 'number': 809} | {'precision': 0.3559322033898305, 'recall': 0.17647058823529413, 'f1': 0.2359550561797753, 'number': 119} | {'precision': 0.4393939393939394, 'recall': 0.49014084507042255, 'f1': 0.46338215712383485, 'number': 1065} | 0.3549 | 0.4977 | 0.4144 | 0.5219 |
62
+ | 1.0484 | 5.0 | 50 | 1.0885 | {'precision': 0.3271441202475685, 'recall': 0.4573547589616811, 'f1': 0.3814432989690722, 'number': 809} | {'precision': 0.2826086956521739, 'recall': 0.2184873949579832, 'f1': 0.24644549763033172, 'number': 119} | {'precision': 0.4808, 'recall': 0.564319248826291, 'f1': 0.5192224622030237, 'number': 1065} | 0.4032 | 0.5003 | 0.4465 | 0.5827 |
63
+ | 0.9672 | 6.0 | 60 | 1.0745 | {'precision': 0.30431309904153353, 'recall': 0.47095179233621753, 'f1': 0.36972343522561857, 'number': 809} | {'precision': 0.34782608695652173, 'recall': 0.20168067226890757, 'f1': 0.25531914893617025, 'number': 119} | {'precision': 0.43936243936243935, 'recall': 0.5953051643192488, 'f1': 0.5055821371610846, 'number': 1065} | 0.3759 | 0.5213 | 0.4368 | 0.5916 |
64
+ | 0.8787 | 7.0 | 70 | 1.1863 | {'precision': 0.3697033898305085, 'recall': 0.43139678615574784, 'f1': 0.3981745579007416, 'number': 809} | {'precision': 0.25, 'recall': 0.2184873949579832, 'f1': 0.23318385650224216, 'number': 119} | {'precision': 0.4801556420233463, 'recall': 0.5793427230046948, 'f1': 0.5251063829787234, 'number': 1065} | 0.4252 | 0.4977 | 0.4586 | 0.5870 |
65
+ | 0.8501 | 8.0 | 80 | 1.1043 | {'precision': 0.31553860819828405, 'recall': 0.40914709517923364, 'f1': 0.3562970936490851, 'number': 809} | {'precision': 0.3484848484848485, 'recall': 0.19327731092436976, 'f1': 0.24864864864864866, 'number': 119} | {'precision': 0.41997593261131166, 'recall': 0.6553990610328638, 'f1': 0.5119178584525119, 'number': 1065} | 0.3788 | 0.5278 | 0.4411 | 0.5878 |
66
+ | 0.805 | 9.0 | 90 | 1.0872 | {'precision': 0.3356828193832599, 'recall': 0.47095179233621753, 'f1': 0.39197530864197533, 'number': 809} | {'precision': 0.32894736842105265, 'recall': 0.21008403361344538, 'f1': 0.25641025641025644, 'number': 119} | {'precision': 0.45454545454545453, 'recall': 0.6197183098591549, 'f1': 0.5244338498212157, 'number': 1065} | 0.4003 | 0.5349 | 0.4579 | 0.6053 |
67
+ | 0.7686 | 10.0 | 100 | 1.1006 | {'precision': 0.35418427726120033, 'recall': 0.5179233621755254, 'f1': 0.42068273092369474, 'number': 809} | {'precision': 0.3333333333333333, 'recall': 0.2184873949579832, 'f1': 0.2639593908629441, 'number': 119} | {'precision': 0.49634443541835904, 'recall': 0.5737089201877934, 'f1': 0.5322299651567944, 'number': 1065} | 0.4238 | 0.5299 | 0.4709 | 0.6028 |
68
+ | 0.7078 | 11.0 | 110 | 1.1631 | {'precision': 0.38475665748393023, 'recall': 0.5179233621755254, 'f1': 0.4415173867228662, 'number': 809} | {'precision': 0.28846153846153844, 'recall': 0.25210084033613445, 'f1': 0.26905829596412556, 'number': 119} | {'precision': 0.520764119601329, 'recall': 0.5887323943661972, 'f1': 0.5526663728514765, 'number': 1065} | 0.4489 | 0.5399 | 0.4902 | 0.6064 |
69
+ | 0.7162 | 12.0 | 120 | 1.1517 | {'precision': 0.36400817995910023, 'recall': 0.4400494437577256, 'f1': 0.3984331281477337, 'number': 809} | {'precision': 0.28421052631578947, 'recall': 0.226890756302521, 'f1': 0.25233644859813087, 'number': 119} | {'precision': 0.4661458333333333, 'recall': 0.672300469483568, 'f1': 0.550557477893118, 'number': 1065} | 0.4212 | 0.5514 | 0.4776 | 0.6014 |
70
+ | 0.6912 | 13.0 | 130 | 1.2013 | {'precision': 0.3880718954248366, 'recall': 0.5871446229913473, 'f1': 0.4672897196261682, 'number': 809} | {'precision': 0.3888888888888889, 'recall': 0.23529411764705882, 'f1': 0.2931937172774869, 'number': 119} | {'precision': 0.5526552655265526, 'recall': 0.5765258215962441, 'f1': 0.5643382352941176, 'number': 1065} | 0.4641 | 0.5605 | 0.5077 | 0.6082 |
71
+ | 0.664 | 14.0 | 140 | 1.1337 | {'precision': 0.37344028520499106, 'recall': 0.5179233621755254, 'f1': 0.4339720352149145, 'number': 809} | {'precision': 0.3218390804597701, 'recall': 0.23529411764705882, 'f1': 0.27184466019417475, 'number': 119} | {'precision': 0.5037650602409639, 'recall': 0.6281690140845071, 'f1': 0.5591307981613038, 'number': 1065} | 0.4399 | 0.5600 | 0.4927 | 0.6142 |
72
+ | 0.6496 | 15.0 | 150 | 1.1516 | {'precision': 0.38400702987697716, 'recall': 0.5401730531520396, 'f1': 0.44889573703133023, 'number': 809} | {'precision': 0.3218390804597701, 'recall': 0.23529411764705882, 'f1': 0.27184466019417475, 'number': 119} | {'precision': 0.5132192846034215, 'recall': 0.6197183098591549, 'f1': 0.5614632071458954, 'number': 1065} | 0.4480 | 0.5645 | 0.4996 | 0.6209 |
73
+
74
+
75
+ ### Framework versions
76
+
77
+ - Transformers 4.37.2
78
+ - Pytorch 2.1.0+cu121
79
+ - Datasets 2.17.1
80
+ - Tokenizers 0.15.2
logs/events.out.tfevents.1708926945.0c0388cb45f4.9156.0 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:0bc64054ade4ad7ab6f34cca2fdf02df0b2686d5f9be38343e13e5e8830ac497
3
- size 13715
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e6a012274f4d6a9fdfb56b6996e442c0067c5e55e979d78908df549929a1b32e
3
+ size 14730
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:6de008b4d69a3a51fad35a4a5f7924e1374386751157db654b5a98e1096d2c83
3
  size 450558212
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:80f253c24281ffb92e748d74aa5c5063ed783298e1034d14f2b6200eb9880d48
3
  size 450558212
preprocessor_config.json ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "apply_ocr": true,
3
+ "do_resize": true,
4
+ "image_processor_type": "LayoutLMv2ImageProcessor",
5
+ "ocr_lang": null,
6
+ "processor_class": "LayoutLMv2Processor",
7
+ "resample": 2,
8
+ "size": {
9
+ "height": 224,
10
+ "width": 224
11
+ },
12
+ "tesseract_config": ""
13
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "additional_special_tokens": [],
45
+ "apply_ocr": false,
46
+ "clean_up_tokenization_spaces": true,
47
+ "cls_token": "[CLS]",
48
+ "cls_token_box": [
49
+ 0,
50
+ 0,
51
+ 0,
52
+ 0
53
+ ],
54
+ "do_basic_tokenize": true,
55
+ "do_lower_case": true,
56
+ "mask_token": "[MASK]",
57
+ "model_max_length": 512,
58
+ "never_split": null,
59
+ "only_label_first_subword": true,
60
+ "pad_token": "[PAD]",
61
+ "pad_token_box": [
62
+ 0,
63
+ 0,
64
+ 0,
65
+ 0
66
+ ],
67
+ "pad_token_label": -100,
68
+ "processor_class": "LayoutLMv2Processor",
69
+ "sep_token": "[SEP]",
70
+ "sep_token_box": [
71
+ 1000,
72
+ 1000,
73
+ 1000,
74
+ 1000
75
+ ],
76
+ "strip_accents": null,
77
+ "tokenize_chinese_chars": true,
78
+ "tokenizer_class": "LayoutLMv2Tokenizer",
79
+ "unk_token": "[UNK]"
80
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff