Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,91 @@
|
|
1 |
---
|
2 |
license: cc-by-4.0
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: cc-by-4.0
|
3 |
+
library_name: timm
|
4 |
---
|
5 |
+
|
6 |
+
# Model card for vit_base_patch16_1024_128.audiomae_as2m_ft_as20k
|
7 |
+
|
8 |
+
This is a port of AudioMAE ViT-B/32 weights for usage with `timm`. The naming convention is adopted from other `timm`'s ViT models.
|
9 |
+
|
10 |
+
See the original repo here: https://github.com/facebookresearch/AudioMAE
|
11 |
+
|
12 |
+
A Vision Transformer (ViT) for audio. Pretrained on AudioSet-2M with Self-Supervised Masked Autoencoder (MAE) method, and fine-tuned on AudioSet-20k.
|
13 |
+
|
14 |
+
## Model Details
|
15 |
+
- **Model Type:** Audio classification / feature backbone
|
16 |
+
- **Papers:**
|
17 |
+
- Masked Autoencoders that Listen: https://arxiv.org/abs/2207.06405
|
18 |
+
- **Pretrain Dataset:** AudioSet-2M
|
19 |
+
- **Original:** https://github.com/facebookresearch/AudioMAE
|
20 |
+
|
21 |
+
## Model Usage
|
22 |
+
### Audio Classification
|
23 |
+
```python
|
24 |
+
from urllib.request import urlopen
|
25 |
+
import timm
|
26 |
+
|
27 |
+
# TODO: change this to audio
|
28 |
+
img = Image.open(urlopen(
|
29 |
+
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
|
30 |
+
))
|
31 |
+
|
32 |
+
model = timm.create_model('gaunernst/vit_base_patch16_1024_128.audiomae_as2m_ft_as20k', pretrained=True)
|
33 |
+
model = model.eval()
|
34 |
+
|
35 |
+
# TODO: torchaudio.compliance.kaldi.fbank
|
36 |
+
|
37 |
+
output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1
|
38 |
+
|
39 |
+
top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)
|
40 |
+
```
|
41 |
+
|
42 |
+
### Audio Embeddings
|
43 |
+
```python
|
44 |
+
from urllib.request import urlopen
|
45 |
+
import timm
|
46 |
+
|
47 |
+
# TODO: change this to audio
|
48 |
+
img = Image.open(urlopen(
|
49 |
+
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
|
50 |
+
))
|
51 |
+
|
52 |
+
model = timm.create_model(
|
53 |
+
'gaunernst/vit_base_patch16_1024_128.audiomae_as2m_ft_as20k',
|
54 |
+
pretrained=True,
|
55 |
+
num_classes=0, # remove classifier nn.Linear
|
56 |
+
)
|
57 |
+
model = model.eval()
|
58 |
+
|
59 |
+
# TODO: torchaudio.compliance.kaldi.fbank
|
60 |
+
|
61 |
+
output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor
|
62 |
+
|
63 |
+
# or equivalently (without needing to set num_classes=0)
|
64 |
+
|
65 |
+
output = model.forward_features(transforms(img).unsqueeze(0))
|
66 |
+
# output is unpooled, a (1, 197, 768) shaped tensor
|
67 |
+
|
68 |
+
output = model.forward_head(output, pre_logits=True)
|
69 |
+
# output is a (1, num_features) shaped tensor
|
70 |
+
```
|
71 |
+
|
72 |
+
## Citation
|
73 |
+
```bibtex
|
74 |
+
@inproceedings{huang2022amae,
|
75 |
+
title = {Masked Autoencoders that Listen},
|
76 |
+
author = {Huang, Po-Yao and Xu, Hu and Li, Juncheng and Baevski, Alexei and Auli, Michael and Galuba, Wojciech and Metze, Florian and Feichtenhofer, Christoph}
|
77 |
+
booktitle = {NeurIPS},
|
78 |
+
year = {2022}
|
79 |
+
}
|
80 |
+
```
|
81 |
+
```bibtex
|
82 |
+
@misc{rw2019timm,
|
83 |
+
author = {Ross Wightman},
|
84 |
+
title = {PyTorch Image Models},
|
85 |
+
year = {2019},
|
86 |
+
publisher = {GitHub},
|
87 |
+
journal = {GitHub repository},
|
88 |
+
doi = {10.5281/zenodo.4414861},
|
89 |
+
howpublished = {\url{https://github.com/huggingface/pytorch-image-models}}
|
90 |
+
}
|
91 |
+
```
|