Update README.md
Browse files
README.md
CHANGED
@@ -1,82 +1,83 @@
|
|
1 |
-
---
|
2 |
-
license: apache-2.0
|
3 |
-
---
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
import
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
sys.path.append(
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
from
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
['
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
<
|
67 |
-
</
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
[<span style="color:red">
|
76 |
-
]
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
|
|
82 |
3. <span style="color:purple">Sentiment Polarity</span>: This is the sentiment expressed.
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
---
|
4 |
+
## Dataset Domain {Restaurant + Laptop} Reviews
|
5 |
+
|
6 |
+
## Overview
|
7 |
+
This work is based on [Grid Tagging Scheme for Aspect-oriented Fine-grained Opinion Extraction](https://aclanthology.org/2020.findings-emnlp.234/).The code from
|
8 |
+
their [github repository](https://github.com/NJUNLP/GTS) was also utilized along with their dataset.
|
9 |
+
|
10 |
+
This model requires custom code as it uses GridTaggingScheme to predict the labels on the input. For the convenience,
|
11 |
+
the custom code and model architecture has been included with the model.
|
12 |
+
|
13 |
+
## Example Code for inferencing
|
14 |
+
|
15 |
+
### STEP 1 (Installing huggingface lib)
|
16 |
+
|
17 |
+
```bash
|
18 |
+
pip install --upgrade huggingface_hub
|
19 |
+
```
|
20 |
+
|
21 |
+
### STEP 2 (Download the custom code and model to predict opinion target, opinion span and sentiment polarity)
|
22 |
+
```python
|
23 |
+
|
24 |
+
from huggingface_hub import hf_hub_download
|
25 |
+
import sys
|
26 |
+
# Download the custom model code
|
27 |
+
bert_gts_pretrained = hf_hub_download(repo_id='gauneg/bert-gts-absa-triple', filename="bert_opinion.py")
|
28 |
+
post = hf_hub_download(repo_id='gauneg/bert-gts-absa-triple', filename="post.py")
|
29 |
+
|
30 |
+
sys.path.append(bert_gts_pretrained.rsplit("/", 1)[0])
|
31 |
+
sys.path.append(post.rsplit("/", 1)[0])
|
32 |
+
|
33 |
+
|
34 |
+
from bert_opinion import BertGTSOpinionTriple
|
35 |
+
from post import DecodeAndEvaluate
|
36 |
+
|
37 |
+
|
38 |
+
from transformers import AutoTokenizer
|
39 |
+
|
40 |
+
|
41 |
+
model_id = 'gauneg/bert-gts-absa-triple'
|
42 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
43 |
+
model = BertGTSOpinionTriple.from_pretrained(model_id)
|
44 |
+
dec_and_infer = DecodeAndEvaluate(tokenizer)
|
45 |
+
test_sentence0 = """I charge it at night and skip taking the cord with me because of the good battery life ."""
|
46 |
+
test_sentence = "The Dell Inspiron 14 Plus is the most well-rounded laptop with great display and battery life that money can buy."
|
47 |
+
|
48 |
+
|
49 |
+
# prediction
|
50 |
+
print(dec_and_infer.decode_predict_string_one(test_sentence, model, max_len=128))
|
51 |
+
|
52 |
+
```
|
53 |
+
Expected output
|
54 |
+
|
55 |
+
```bash
|
56 |
+
[['display', 'well - rounded', 'positive'],
|
57 |
+
['display', 'great', 'positive'],
|
58 |
+
['battery life', 'great', 'positive']]
|
59 |
+
```
|
60 |
+
|
61 |
+
# DETAILS
|
62 |
+
The model has been trained to use Grid Tagging Scheme (GTS) to predict `Opinion Target`, `Opinion Span` and `Sentiment Polarity`. For the purpose of training this model the domain specific datasets (laptop and restaurant reviews) were combined. The grid tagging example is shown
|
63 |
+
in the following diagram:
|
64 |
+
|
65 |
+
<figure>
|
66 |
+
<img src="./gts_pic.png" alt="gts-image" style="width:45%">
|
67 |
+
<figcaption>Fig 1. Grid tagging Scheme from <a href="https://aclanthology.org/2020.findings-emnlp.234/">(Wu et al., Findings 2020)</a> </figcaption>
|
68 |
+
</figure>
|
69 |
+
|
70 |
+
In the above sentence there are two absa triples. Each triple is expressed in the following order:
|
71 |
+
|
72 |
+
[<span style="color:red">Aspect Term/Opinion Target</span>, <span style="color:#7393B3">opinion span</span>, <span style="color:purple">sentiment polarity</span>]
|
73 |
+
|
74 |
+
The model and sample code as shown in the snippet with extract opinion triplets as: [
|
75 |
+
[<span style="color:red">hot dogs</span>, <span style="color:#7393B3">top notch</span>, <span style="color:purple">positive</span>],
|
76 |
+
[<span style="color:red">coffee</span>, <span style="color:#7393B3">avergae</span>, <span style="color:purple">neutral</span>]
|
77 |
+
]
|
78 |
+
|
79 |
+
Definitions <a href="https://aclanthology.org/2020.findings-emnlp.234/">(Wu et al., Findings 2020)</a>:
|
80 |
+
|
81 |
+
1. <span style="color:red">Aspect Term/Opinion Target</span>: Aspect term, also known as opinion target, is the word or phrase in a sentence representing feature or entity of products or services.
|
82 |
+
2. <span style="color:#7393B3">Opinion Term </span>: Opinion Term refers to the term in a sentence used to express attitudes or opinions explicitly.
|
83 |
3. <span style="color:purple">Sentiment Polarity</span>: This is the sentiment expressed.
|