Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,45 @@
|
|
1 |
---
|
2 |
license: gpl-3.0
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: gpl-3.0
|
3 |
---
|
4 |
+
|
5 |
+
Pre-trained word embeddings using the text of published scientific manuscripts. These embeddings use 300 dimensions and were trained using the fasttext algorithm on all available manuscripts found in the [PMC Open Access Subset](https://www.ncbi.nlm.nih.gov/pmc/tools/openftlist/). See the paper here: https://pubmed.ncbi.nlm.nih.gov/34920127/
|
6 |
+
|
7 |
+
Citation:
|
8 |
+
|
9 |
+
```
|
10 |
+
@article{flamholz2022word,
|
11 |
+
title={Word embeddings trained on published case reports are lightweight, effective for clinical tasks, and free of protected health information},
|
12 |
+
author={Flamholz, Zachary N and Crane-Droesch, Andrew and Ungar, Lyle H and Weissman, Gary E},
|
13 |
+
journal={Journal of Biomedical Informatics},
|
14 |
+
volume={125},
|
15 |
+
pages={103971},
|
16 |
+
year={2022},
|
17 |
+
publisher={Elsevier}
|
18 |
+
}
|
19 |
+
```
|
20 |
+
|
21 |
+
## Quick start
|
22 |
+
|
23 |
+
Word embeddings are compatible with the [`gensim` Python package](https://radimrehurek.com/gensim/) format.
|
24 |
+
|
25 |
+
First download the files from this archive. Then load the embeddings into Python.
|
26 |
+
|
27 |
+
|
28 |
+
```python
|
29 |
+
|
30 |
+
from gensim.models import FastText, Word2Vec, KeyedVectors # KeyedVectors are used to load the GloVe models
|
31 |
+
|
32 |
+
# Load the model
|
33 |
+
model = FastText.load('ft_oa_all_300d.bin')
|
34 |
+
|
35 |
+
# Return 100-dimensional vector representations of each word
|
36 |
+
model.wv.word_vec('diabetes')
|
37 |
+
model.wv.word_vec('cardiac_arrest')
|
38 |
+
model.wv.word_vec('lymphangioleiomyomatosis')
|
39 |
+
|
40 |
+
# Try out cosine similarity
|
41 |
+
model.wv.similarity('copd', 'chronic_obstructive_pulmonary_disease')
|
42 |
+
model.wv.similarity('myocardial_infarction', 'heart_attack')
|
43 |
+
model.wv.similarity('lymphangioleiomyomatosis', 'lam')
|
44 |
+
|
45 |
+
```
|