update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,176 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- generated_from_trainer
|
4 |
+
datasets:
|
5 |
+
- ai_light_dance
|
6 |
+
metrics:
|
7 |
+
- wer
|
8 |
+
model-index:
|
9 |
+
- name: ai-light-dance_drums_ft_pretrain_wav2vec2-base-new-v2
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
name: Automatic Speech Recognition
|
13 |
+
type: automatic-speech-recognition
|
14 |
+
dataset:
|
15 |
+
name: ai_light_dance
|
16 |
+
type: ai_light_dance
|
17 |
+
config: onset-idmt-smt-drums-v2+MDBDrums
|
18 |
+
split: train
|
19 |
+
args: onset-idmt-smt-drums-v2+MDBDrums
|
20 |
+
metrics:
|
21 |
+
- name: Wer
|
22 |
+
type: wer
|
23 |
+
value: 0.3098927294398093
|
24 |
+
---
|
25 |
+
|
26 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
27 |
+
should probably proofread and complete it, then remove this comment. -->
|
28 |
+
|
29 |
+
# ai-light-dance_drums_ft_pretrain_wav2vec2-base-new-v2
|
30 |
+
|
31 |
+
This model is a fine-tuned version of [gary109/ai-light-dance_drums_pretrain_wav2vec2-base-new](https://huggingface.co/gary109/ai-light-dance_drums_pretrain_wav2vec2-base-new) on the ai_light_dance dataset.
|
32 |
+
It achieves the following results on the evaluation set:
|
33 |
+
- Loss: 0.5744
|
34 |
+
- Wer: 0.3099
|
35 |
+
|
36 |
+
## Model description
|
37 |
+
|
38 |
+
More information needed
|
39 |
+
|
40 |
+
## Intended uses & limitations
|
41 |
+
|
42 |
+
More information needed
|
43 |
+
|
44 |
+
## Training and evaluation data
|
45 |
+
|
46 |
+
More information needed
|
47 |
+
|
48 |
+
## Training procedure
|
49 |
+
|
50 |
+
### Training hyperparameters
|
51 |
+
|
52 |
+
The following hyperparameters were used during training:
|
53 |
+
- learning_rate: 0.0004
|
54 |
+
- train_batch_size: 4
|
55 |
+
- eval_batch_size: 4
|
56 |
+
- seed: 42
|
57 |
+
- gradient_accumulation_steps: 2
|
58 |
+
- total_train_batch_size: 8
|
59 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
60 |
+
- lr_scheduler_type: linear
|
61 |
+
- lr_scheduler_warmup_steps: 10
|
62 |
+
- num_epochs: 100.0
|
63 |
+
- mixed_precision_training: Native AMP
|
64 |
+
|
65 |
+
### Training results
|
66 |
+
|
67 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
68 |
+
|:-------------:|:-----:|:----:|:---------------:|:------:|
|
69 |
+
| 4.6468 | 0.98 | 22 | 3.2315 | 1.0 |
|
70 |
+
| 1.5745 | 1.98 | 44 | 3.1603 | 1.0 |
|
71 |
+
| 1.465 | 2.98 | 66 | 2.2551 | 1.0 |
|
72 |
+
| 1.3168 | 3.98 | 88 | 1.8461 | 1.0 |
|
73 |
+
| 1.1359 | 4.98 | 110 | 1.4874 | 0.9797 |
|
74 |
+
| 0.9769 | 5.98 | 132 | 1.7359 | 0.5495 |
|
75 |
+
| 0.9019 | 6.98 | 154 | 1.5833 | 0.5268 |
|
76 |
+
| 0.8057 | 7.98 | 176 | 1.4892 | 0.5304 |
|
77 |
+
| 1.0845 | 8.98 | 198 | 1.3939 | 0.5197 |
|
78 |
+
| 0.7562 | 9.98 | 220 | 1.1238 | 0.5447 |
|
79 |
+
| 0.7259 | 10.98 | 242 | 1.2936 | 0.5006 |
|
80 |
+
| 0.7318 | 11.98 | 264 | 1.2763 | 0.4660 |
|
81 |
+
| 0.6452 | 12.98 | 286 | 1.2947 | 0.4779 |
|
82 |
+
| 0.6353 | 13.98 | 308 | 1.1925 | 0.4517 |
|
83 |
+
| 0.6463 | 14.98 | 330 | 0.8667 | 0.4100 |
|
84 |
+
| 0.5381 | 15.98 | 352 | 1.1243 | 0.3909 |
|
85 |
+
| 0.5637 | 16.98 | 374 | 0.8683 | 0.3754 |
|
86 |
+
| 0.6149 | 17.98 | 396 | 1.1040 | 0.3731 |
|
87 |
+
| 0.6138 | 18.98 | 418 | 1.1068 | 0.3850 |
|
88 |
+
| 0.7381 | 19.98 | 440 | 0.9203 | 0.3623 |
|
89 |
+
| 0.5064 | 20.98 | 462 | 0.8806 | 0.3540 |
|
90 |
+
| 0.4731 | 21.98 | 484 | 0.7259 | 0.3623 |
|
91 |
+
| 0.5232 | 22.98 | 506 | 0.7935 | 0.3516 |
|
92 |
+
| 0.4689 | 23.98 | 528 | 0.7771 | 0.3540 |
|
93 |
+
| 0.4902 | 24.98 | 550 | 0.6897 | 0.3909 |
|
94 |
+
| 0.4079 | 25.98 | 572 | 0.8030 | 0.3552 |
|
95 |
+
| 0.5045 | 26.98 | 594 | 0.6778 | 0.3790 |
|
96 |
+
| 0.4373 | 27.98 | 616 | 0.7456 | 0.3695 |
|
97 |
+
| 0.4366 | 28.98 | 638 | 0.7009 | 0.3433 |
|
98 |
+
| 0.3944 | 29.98 | 660 | 0.6841 | 0.3468 |
|
99 |
+
| 0.4206 | 30.98 | 682 | 0.7093 | 0.3373 |
|
100 |
+
| 0.3949 | 31.98 | 704 | 0.6901 | 0.3576 |
|
101 |
+
| 0.4416 | 32.98 | 726 | 0.6762 | 0.3397 |
|
102 |
+
| 0.4248 | 33.98 | 748 | 0.7196 | 0.3540 |
|
103 |
+
| 0.4214 | 34.98 | 770 | 0.6669 | 0.3254 |
|
104 |
+
| 0.416 | 35.98 | 792 | 0.6422 | 0.3445 |
|
105 |
+
| 0.3687 | 36.98 | 814 | 0.6345 | 0.3504 |
|
106 |
+
| 0.4119 | 37.98 | 836 | 0.6306 | 0.3385 |
|
107 |
+
| 0.359 | 38.98 | 858 | 0.6538 | 0.3576 |
|
108 |
+
| 0.359 | 39.98 | 880 | 0.6613 | 0.3349 |
|
109 |
+
| 0.3488 | 40.98 | 902 | 0.5976 | 0.3468 |
|
110 |
+
| 0.3543 | 41.98 | 924 | 0.6327 | 0.3433 |
|
111 |
+
| 0.3647 | 42.98 | 946 | 0.6208 | 0.3600 |
|
112 |
+
| 0.3529 | 43.98 | 968 | 0.6008 | 0.3492 |
|
113 |
+
| 0.3691 | 44.98 | 990 | 0.6065 | 0.3492 |
|
114 |
+
| 0.329 | 45.98 | 1012 | 0.6288 | 0.3373 |
|
115 |
+
| 0.3357 | 46.98 | 1034 | 0.5760 | 0.3480 |
|
116 |
+
| 0.3318 | 47.98 | 1056 | 0.5637 | 0.3564 |
|
117 |
+
| 0.3181 | 48.98 | 1078 | 0.5560 | 0.3468 |
|
118 |
+
| 0.3313 | 49.98 | 1100 | 0.5905 | 0.3337 |
|
119 |
+
| 0.3059 | 50.98 | 1122 | 0.5443 | 0.3278 |
|
120 |
+
| 0.3375 | 51.98 | 1144 | 0.5695 | 0.3576 |
|
121 |
+
| 0.3191 | 52.98 | 1166 | 0.5874 | 0.3385 |
|
122 |
+
| 0.3115 | 53.98 | 1188 | 0.5264 | 0.3635 |
|
123 |
+
| 0.3044 | 54.98 | 1210 | 0.5480 | 0.3433 |
|
124 |
+
| 0.3256 | 55.98 | 1232 | 0.5677 | 0.3385 |
|
125 |
+
| 0.2938 | 56.98 | 1254 | 0.5597 | 0.3445 |
|
126 |
+
| 0.2853 | 57.98 | 1276 | 0.5942 | 0.3373 |
|
127 |
+
| 0.3348 | 58.98 | 1298 | 0.5733 | 0.3421 |
|
128 |
+
| 0.3024 | 59.98 | 1320 | 0.5604 | 0.3433 |
|
129 |
+
| 0.2655 | 60.98 | 1342 | 0.5348 | 0.3468 |
|
130 |
+
| 0.3029 | 61.98 | 1364 | 0.5752 | 0.3206 |
|
131 |
+
| 0.3435 | 62.98 | 1386 | 0.5489 | 0.3063 |
|
132 |
+
| 0.3125 | 63.98 | 1408 | 0.5736 | 0.3075 |
|
133 |
+
| 0.263 | 64.98 | 1430 | 0.5505 | 0.3206 |
|
134 |
+
| 0.2665 | 65.98 | 1452 | 0.5391 | 0.3230 |
|
135 |
+
| 0.299 | 66.98 | 1474 | 0.5389 | 0.3135 |
|
136 |
+
| 0.2909 | 67.98 | 1496 | 0.5841 | 0.3099 |
|
137 |
+
| 0.2988 | 68.98 | 1518 | 0.5847 | 0.3004 |
|
138 |
+
| 0.2879 | 69.98 | 1540 | 0.5941 | 0.2968 |
|
139 |
+
| 0.2802 | 70.98 | 1562 | 0.6612 | 0.2920 |
|
140 |
+
| 0.2877 | 71.98 | 1584 | 0.5641 | 0.3051 |
|
141 |
+
| 0.2727 | 72.98 | 1606 | 0.6138 | 0.3063 |
|
142 |
+
| 0.2668 | 73.98 | 1628 | 0.6087 | 0.2920 |
|
143 |
+
| 0.2675 | 74.98 | 1650 | 0.5876 | 0.2932 |
|
144 |
+
| 0.264 | 75.98 | 1672 | 0.6043 | 0.2980 |
|
145 |
+
| 0.2352 | 76.98 | 1694 | 0.5829 | 0.2932 |
|
146 |
+
| 0.2494 | 77.98 | 1716 | 0.5775 | 0.3063 |
|
147 |
+
| 0.2621 | 78.98 | 1738 | 0.5676 | 0.2956 |
|
148 |
+
| 0.2788 | 79.98 | 1760 | 0.5864 | 0.2932 |
|
149 |
+
| 0.2615 | 80.98 | 1782 | 0.5754 | 0.3015 |
|
150 |
+
| 0.2542 | 81.98 | 1804 | 0.5651 | 0.3027 |
|
151 |
+
| 0.2641 | 82.98 | 1826 | 0.5731 | 0.3004 |
|
152 |
+
| 0.2532 | 83.98 | 1848 | 0.5782 | 0.2968 |
|
153 |
+
| 0.2645 | 84.98 | 1870 | 0.5718 | 0.3039 |
|
154 |
+
| 0.2296 | 85.98 | 1892 | 0.5628 | 0.3147 |
|
155 |
+
| 0.2394 | 86.98 | 1914 | 0.5920 | 0.3027 |
|
156 |
+
| 0.2636 | 87.98 | 1936 | 0.6085 | 0.2968 |
|
157 |
+
| 0.2371 | 88.98 | 1958 | 0.5809 | 0.3075 |
|
158 |
+
| 0.2364 | 89.98 | 1980 | 0.5927 | 0.3039 |
|
159 |
+
| 0.2812 | 90.98 | 2002 | 0.5713 | 0.3123 |
|
160 |
+
| 0.2141 | 91.98 | 2024 | 0.5743 | 0.3039 |
|
161 |
+
| 0.2919 | 92.98 | 2046 | 0.5837 | 0.3063 |
|
162 |
+
| 0.2288 | 93.98 | 2068 | 0.5860 | 0.3015 |
|
163 |
+
| 0.2585 | 94.98 | 2090 | 0.5776 | 0.3147 |
|
164 |
+
| 0.2529 | 95.98 | 2112 | 0.5625 | 0.3159 |
|
165 |
+
| 0.2343 | 96.98 | 2134 | 0.5700 | 0.3087 |
|
166 |
+
| 0.2567 | 97.98 | 2156 | 0.5729 | 0.3087 |
|
167 |
+
| 0.2448 | 98.98 | 2178 | 0.5728 | 0.3111 |
|
168 |
+
| 0.2501 | 99.98 | 2200 | 0.5744 | 0.3099 |
|
169 |
+
|
170 |
+
|
171 |
+
### Framework versions
|
172 |
+
|
173 |
+
- Transformers 4.25.0.dev0
|
174 |
+
- Pytorch 1.8.1+cu111
|
175 |
+
- Datasets 2.7.1.dev0
|
176 |
+
- Tokenizers 0.13.2
|