gaodrew commited on
Commit
c070ae3
1 Parent(s): 2601107

Model save

Browse files
Files changed (1) hide show
  1. README.md +74 -0
README.md ADDED
@@ -0,0 +1,74 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: mit
4
+ base_model: microsoft/deberta-v3-large
5
+ tags:
6
+ - generated_from_trainer
7
+ metrics:
8
+ - precision
9
+ - recall
10
+ - f1
11
+ - accuracy
12
+ model-index:
13
+ - name: deberta-pii-masking-augmented-test2
14
+ results: []
15
+ ---
16
+
17
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
18
+ should probably proofread and complete it, then remove this comment. -->
19
+
20
+ # deberta-pii-masking-augmented-test2
21
+
22
+ This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on an unknown dataset.
23
+ It achieves the following results on the evaluation set:
24
+ - Loss: 0.0248
25
+ - Precision: 0.9565
26
+ - Recall: 0.9663
27
+ - F1: 0.9613
28
+ - Accuracy: 0.9919
29
+
30
+ ## Model description
31
+
32
+ More information needed
33
+
34
+ ## Intended uses & limitations
35
+
36
+ More information needed
37
+
38
+ ## Training and evaluation data
39
+
40
+ More information needed
41
+
42
+ ## Training procedure
43
+
44
+ ### Training hyperparameters
45
+
46
+ The following hyperparameters were used during training:
47
+ - learning_rate: 2e-05
48
+ - train_batch_size: 16
49
+ - eval_batch_size: 16
50
+ - seed: 42
51
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
52
+ - lr_scheduler_type: linear
53
+ - lr_scheduler_warmup_ratio: 0.1
54
+ - num_epochs: 1
55
+ - mixed_precision_training: Native AMP
56
+
57
+ ### Training results
58
+
59
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
60
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
61
+ | 0.5574 | 0.16 | 1000 | 0.0750 | 0.8633 | 0.9081 | 0.8851 | 0.9774 |
62
+ | 0.0572 | 0.32 | 2000 | 0.0455 | 0.9151 | 0.9290 | 0.9220 | 0.9857 |
63
+ | 0.0401 | 0.48 | 3000 | 0.0395 | 0.9294 | 0.9452 | 0.9372 | 0.9873 |
64
+ | 0.0319 | 0.64 | 4000 | 0.0301 | 0.9443 | 0.9548 | 0.9496 | 0.9902 |
65
+ | 0.0277 | 0.8 | 5000 | 0.0264 | 0.9503 | 0.9618 | 0.9560 | 0.9912 |
66
+ | 0.0231 | 0.96 | 6000 | 0.0249 | 0.9538 | 0.9652 | 0.9595 | 0.9920 |
67
+
68
+
69
+ ### Framework versions
70
+
71
+ - Transformers 4.44.2
72
+ - Pytorch 2.5.0+cu121
73
+ - Datasets 3.1.0
74
+ - Tokenizers 0.19.1