ganeshanmalhotra007 commited on
Commit
e699320
1 Parent(s): 15e5e58

Testing upload of a test model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 1024,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,702 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: []
3
+ library_name: sentence-transformers
4
+ tags:
5
+ - sentence-transformers
6
+ - sentence-similarity
7
+ - feature-extraction
8
+ - generated_from_trainer
9
+ - dataset_size:7005
10
+ - loss:MultipleNegativesRankingLoss_with_logging
11
+ base_model: Alibaba-NLP/gte-large-en-v1.5
12
+ datasets: []
13
+ metrics:
14
+ - cosine_accuracy@1
15
+ - cosine_accuracy@3
16
+ - cosine_accuracy@5
17
+ - cosine_accuracy@10
18
+ - cosine_accuracy@30
19
+ - cosine_accuracy@50
20
+ - cosine_accuracy@100
21
+ - cosine_precision@1
22
+ - cosine_precision@3
23
+ - cosine_precision@5
24
+ - cosine_precision@10
25
+ - cosine_precision@30
26
+ - cosine_precision@50
27
+ - cosine_precision@100
28
+ - cosine_recall@1
29
+ - cosine_recall@3
30
+ - cosine_recall@5
31
+ - cosine_recall@10
32
+ - cosine_recall@30
33
+ - cosine_recall@50
34
+ - cosine_recall@100
35
+ - cosine_ndcg@10
36
+ - cosine_mrr@10
37
+ - cosine_map@100
38
+ - dot_accuracy@1
39
+ - dot_accuracy@3
40
+ - dot_accuracy@5
41
+ - dot_accuracy@10
42
+ - dot_accuracy@30
43
+ - dot_accuracy@50
44
+ - dot_accuracy@100
45
+ - dot_precision@1
46
+ - dot_precision@3
47
+ - dot_precision@5
48
+ - dot_precision@10
49
+ - dot_precision@30
50
+ - dot_precision@50
51
+ - dot_precision@100
52
+ - dot_recall@1
53
+ - dot_recall@3
54
+ - dot_recall@5
55
+ - dot_recall@10
56
+ - dot_recall@30
57
+ - dot_recall@50
58
+ - dot_recall@100
59
+ - dot_ndcg@10
60
+ - dot_mrr@10
61
+ - dot_map@100
62
+ widget:
63
+ - source_sentence: What are the client's target industries?
64
+ sentences:
65
+ - 'Right.
66
+
67
+ And also, you know, heavy equipment.
68
+
69
+ Okay, I understand.'
70
+ - 'And there''s a full spectrum.
71
+
72
+ It''s all about your order offering.
73
+
74
+ Right.
75
+
76
+ If you''re offering, like, a full design platform where now we have way more engagement
77
+ in terms of employee being able to get it from one place, and that could be.
78
+
79
+ That could take away again, like, my pitch would be basically being on the show.'
80
+ - 'Our competitors are billion dollar corporations.
81
+
82
+ So Experian Epsilon, which is owned by IPG or publicis, big french company, Axiom,
83
+ which is owned by IPG.
84
+
85
+ Inter public group, huge agency.
86
+
87
+ So it''s nice competing against multibillion dollar corporations because they
88
+ move at the speed of the Statue of Liberty.'
89
+ - source_sentence: What is the strategy for heating products?
90
+ sentences:
91
+ - 'Then when you go in to take a look, you say, okay, I''ve got this.
92
+
93
+ Now I need to record my test results so that we do down here.
94
+
95
+ And we say, okay, this is me, so I''ll pick myself.
96
+
97
+ And here we go.
98
+
99
+ So once you''re in here, you say, okay, it''s inspector me.'
100
+ - 'I don''t think we make any margin on these products.
101
+
102
+ I''m going to put it on here, though, because I want to add different ones.
103
+
104
+ So three in one and then.
105
+
106
+ Underfloor heating?'
107
+ - 'How are others using it?
108
+
109
+ Use cases like.
110
+
111
+ Yeah, for example, we have one, one partner, there''s climbo.'
112
+ - source_sentence: What feature did Aseel request regarding budget information display?
113
+ sentences:
114
+ - 'So you want to do your west coast.
115
+
116
+ Do you want to do 10:00 a.m.
117
+
118
+ on the morning of 13th?'
119
+ - 'But the only thing that I just was thinking about is, for example, if I was a
120
+ head teacher and I''m about to approve an order and obviously I go and click on
121
+ the three dots and it tells me my geo budget department by GL budget and obviously
122
+ tells you what your total budget is, your spend and what''s remaining.
123
+
124
+ Is there a way in which I can see what actually went under proof expenditure?
125
+
126
+ So it should be.
127
+
128
+ So to see how much has been committed against the budget?'
129
+ - 'Awesome.
130
+
131
+ And speaking of releases, is there any way I''m not getting the.
132
+
133
+ And I''m sure Chris probably is.'
134
+ - source_sentence: Does the customer have any other EAP-like resources available?
135
+ sentences:
136
+ - 'Every time I make a post, I get.
137
+
138
+ I get just a ton of inquiries, you know?
139
+
140
+ And we''re just.
141
+
142
+ We''re doing a bunch of cool operational stuff right now, so we''re just trying
143
+ to get that all figured out, you know?
144
+
145
+ Yeah.
146
+
147
+ Well, hey, let me give you a rundown of a couple things I''m doing with, like,
148
+ people in your kind of peripheral.
149
+
150
+ Just so you know what we''re trying to do to boost the voices of you and agencies
151
+ like you.'
152
+ - 'So we need Kim and Manju.
153
+
154
+ We need to account that for production downtime for on 16th.
155
+
156
+ No cutover plan.'
157
+ - 'They''re thinking, well, there we have them already, and they offer all these
158
+ things.
159
+
160
+ This is pretty great, you know, because we also use, so we have Voya life insurance,
161
+ and through Voya, they offer a couple eap type of resources, too.
162
+
163
+ Right.
164
+
165
+ So we have additional assistance with another program.
166
+
167
+ Right.
168
+
169
+ But with our eap, which is through Magellan, they would just usually would just
170
+ be better than the other comparisons when it came down to it.'
171
+ - source_sentence: What was Nathan's response to the initial proposal from Global
172
+ Air U?
173
+ sentences:
174
+ - But I was listening to everything that you were talking about.
175
+ - 'And hopefully that should update now in your account in a second.
176
+
177
+ Yeah.
178
+
179
+ If you give that a go now, you should see all the way to August 2025.'
180
+ - 'I don''t see on the proposal.
181
+
182
+ I don''t see anything class or the class related.
183
+
184
+ Um.
185
+
186
+ Oh, so for the course.
187
+
188
+ No, no.'
189
+ pipeline_tag: sentence-similarity
190
+ model-index:
191
+ - name: SentenceTransformer based on Alibaba-NLP/gte-large-en-v1.5
192
+ results:
193
+ - task:
194
+ type: information-retrieval
195
+ name: Information Retrieval
196
+ dataset:
197
+ name: Unknown
198
+ type: unknown
199
+ metrics:
200
+ - type: cosine_accuracy@1
201
+ value: 0.32793959007551243
202
+ name: Cosine Accuracy@1
203
+ - type: cosine_accuracy@3
204
+ value: 0.48975188781014023
205
+ name: Cosine Accuracy@3
206
+ - type: cosine_accuracy@5
207
+ value: 0.5663430420711975
208
+ name: Cosine Accuracy@5
209
+ - type: cosine_accuracy@10
210
+ value: 0.6612729234088457
211
+ name: Cosine Accuracy@10
212
+ - type: cosine_accuracy@30
213
+ value: 0.7669902912621359
214
+ name: Cosine Accuracy@30
215
+ - type: cosine_accuracy@50
216
+ value: 0.8155339805825242
217
+ name: Cosine Accuracy@50
218
+ - type: cosine_accuracy@100
219
+ value: 0.8597626752966558
220
+ name: Cosine Accuracy@100
221
+ - type: cosine_precision@1
222
+ value: 0.32793959007551243
223
+ name: Cosine Precision@1
224
+ - type: cosine_precision@3
225
+ value: 0.1902193455591514
226
+ name: Cosine Precision@3
227
+ - type: cosine_precision@5
228
+ value: 0.13829557713052856
229
+ name: Cosine Precision@5
230
+ - type: cosine_precision@10
231
+ value: 0.08716289104638619
232
+ name: Cosine Precision@10
233
+ - type: cosine_precision@30
234
+ value: 0.038439410284070476
235
+ name: Cosine Precision@30
236
+ - type: cosine_precision@50
237
+ value: 0.025717367853290186
238
+ name: Cosine Precision@50
239
+ - type: cosine_precision@100
240
+ value: 0.014282632146709814
241
+ name: Cosine Precision@100
242
+ - type: cosine_recall@1
243
+ value: 0.19877399359600004
244
+ name: Cosine Recall@1
245
+ - type: cosine_recall@3
246
+ value: 0.32606462218112703
247
+ name: Cosine Recall@3
248
+ - type: cosine_recall@5
249
+ value: 0.39100529100529097
250
+ name: Cosine Recall@5
251
+ - type: cosine_recall@10
252
+ value: 0.475571479940412
253
+ name: Cosine Recall@10
254
+ - type: cosine_recall@30
255
+ value: 0.6031369325867708
256
+ name: Cosine Recall@30
257
+ - type: cosine_recall@50
258
+ value: 0.660217290799815
259
+ name: Cosine Recall@50
260
+ - type: cosine_recall@100
261
+ value: 0.7195099398982894
262
+ name: Cosine Recall@100
263
+ - type: cosine_ndcg@10
264
+ value: 0.3784769275629581
265
+ name: Cosine Ndcg@10
266
+ - type: cosine_mrr@10
267
+ value: 0.42950420369514186
268
+ name: Cosine Mrr@10
269
+ - type: cosine_map@100
270
+ value: 0.3193224907975288
271
+ name: Cosine Map@100
272
+ - type: dot_accuracy@1
273
+ value: 0.3290183387270766
274
+ name: Dot Accuracy@1
275
+ - type: dot_accuracy@3
276
+ value: 0.4886731391585761
277
+ name: Dot Accuracy@3
278
+ - type: dot_accuracy@5
279
+ value: 0.5717367853290184
280
+ name: Dot Accuracy@5
281
+ - type: dot_accuracy@10
282
+ value: 0.6634304207119741
283
+ name: Dot Accuracy@10
284
+ - type: dot_accuracy@30
285
+ value: 0.7669902912621359
286
+ name: Dot Accuracy@30
287
+ - type: dot_accuracy@50
288
+ value: 0.8133764832793959
289
+ name: Dot Accuracy@50
290
+ - type: dot_accuracy@100
291
+ value: 0.8619201725997843
292
+ name: Dot Accuracy@100
293
+ - type: dot_precision@1
294
+ value: 0.3290183387270766
295
+ name: Dot Precision@1
296
+ - type: dot_precision@3
297
+ value: 0.18985976267529667
298
+ name: Dot Precision@3
299
+ - type: dot_precision@5
300
+ value: 0.1387270765911543
301
+ name: Dot Precision@5
302
+ - type: dot_precision@10
303
+ value: 0.08737864077669903
304
+ name: Dot Precision@10
305
+ - type: dot_precision@30
306
+ value: 0.038511326860841424
307
+ name: Dot Precision@30
308
+ - type: dot_precision@50
309
+ value: 0.025652642934196335
310
+ name: Dot Precision@50
311
+ - type: dot_precision@100
312
+ value: 0.0143042071197411
313
+ name: Dot Precision@100
314
+ - type: dot_recall@1
315
+ value: 0.19940326364274585
316
+ name: Dot Recall@1
317
+ - type: dot_recall@3
318
+ value: 0.32588483073919966
319
+ name: Dot Recall@3
320
+ - type: dot_recall@5
321
+ value: 0.39370216263420144
322
+ name: Dot Recall@5
323
+ - type: dot_recall@10
324
+ value: 0.4770997071967946
325
+ name: Dot Recall@10
326
+ - type: dot_recall@30
327
+ value: 0.6043595143918767
328
+ name: Dot Recall@30
329
+ - type: dot_recall@50
330
+ value: 0.659138542148251
331
+ name: Dot Recall@50
332
+ - type: dot_recall@100
333
+ value: 0.7219987671443983
334
+ name: Dot Recall@100
335
+ - type: dot_ndcg@10
336
+ value: 0.3791495475200093
337
+ name: Dot Ndcg@10
338
+ - type: dot_mrr@10
339
+ value: 0.4305302991387128
340
+ name: Dot Mrr@10
341
+ - type: dot_map@100
342
+ value: 0.31951258454174397
343
+ name: Dot Map@100
344
+ ---
345
+
346
+ # SentenceTransformer based on Alibaba-NLP/gte-large-en-v1.5
347
+
348
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Alibaba-NLP/gte-large-en-v1.5](https://huggingface.co/Alibaba-NLP/gte-large-en-v1.5). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
349
+
350
+ ## Model Details
351
+
352
+ ### Model Description
353
+ - **Model Type:** Sentence Transformer
354
+ - **Base model:** [Alibaba-NLP/gte-large-en-v1.5](https://huggingface.co/Alibaba-NLP/gte-large-en-v1.5) <!-- at revision 104333d6af6f97649377c2afbde10a7704870c7b -->
355
+ - **Maximum Sequence Length:** 8192 tokens
356
+ - **Output Dimensionality:** 1024 tokens
357
+ - **Similarity Function:** Cosine Similarity
358
+ <!-- - **Training Dataset:** Unknown -->
359
+ <!-- - **Language:** Unknown -->
360
+ <!-- - **License:** Unknown -->
361
+
362
+ ### Model Sources
363
+
364
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
365
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
366
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
367
+
368
+ ### Full Model Architecture
369
+
370
+ ```
371
+ SentenceTransformer(
372
+ (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: NewModel
373
+ (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
374
+ )
375
+ ```
376
+
377
+ ## Usage
378
+
379
+ ### Direct Usage (Sentence Transformers)
380
+
381
+ First install the Sentence Transformers library:
382
+
383
+ ```bash
384
+ pip install -U sentence-transformers
385
+ ```
386
+
387
+ Then you can load this model and run inference.
388
+ ```python
389
+ from sentence_transformers import SentenceTransformer
390
+
391
+ # Download from the 🤗 Hub
392
+ model = SentenceTransformer("model_3")
393
+ # Run inference
394
+ sentences = [
395
+ "What was Nathan's response to the initial proposal from Global Air U?",
396
+ "I don't see on the proposal.\nI don't see anything class or the class related.\nUm.\nOh, so for the course.\nNo, no.",
397
+ 'And hopefully that should update now in your account in a second.\nYeah.\nIf you give that a go now, you should see all the way to August 2025.',
398
+ ]
399
+ embeddings = model.encode(sentences)
400
+ print(embeddings.shape)
401
+ # [3, 1024]
402
+
403
+ # Get the similarity scores for the embeddings
404
+ similarities = model.similarity(embeddings, embeddings)
405
+ print(similarities.shape)
406
+ # [3, 3]
407
+ ```
408
+
409
+ <!--
410
+ ### Direct Usage (Transformers)
411
+
412
+ <details><summary>Click to see the direct usage in Transformers</summary>
413
+
414
+ </details>
415
+ -->
416
+
417
+ <!--
418
+ ### Downstream Usage (Sentence Transformers)
419
+
420
+ You can finetune this model on your own dataset.
421
+
422
+ <details><summary>Click to expand</summary>
423
+
424
+ </details>
425
+ -->
426
+
427
+ <!--
428
+ ### Out-of-Scope Use
429
+
430
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
431
+ -->
432
+
433
+ ## Evaluation
434
+
435
+ ### Metrics
436
+
437
+ #### Information Retrieval
438
+
439
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
440
+
441
+ | Metric | Value |
442
+ |:---------------------|:-----------|
443
+ | cosine_accuracy@1 | 0.3279 |
444
+ | cosine_accuracy@3 | 0.4898 |
445
+ | cosine_accuracy@5 | 0.5663 |
446
+ | cosine_accuracy@10 | 0.6613 |
447
+ | cosine_accuracy@30 | 0.767 |
448
+ | cosine_accuracy@50 | 0.8155 |
449
+ | cosine_accuracy@100 | 0.8598 |
450
+ | cosine_precision@1 | 0.3279 |
451
+ | cosine_precision@3 | 0.1902 |
452
+ | cosine_precision@5 | 0.1383 |
453
+ | cosine_precision@10 | 0.0872 |
454
+ | cosine_precision@30 | 0.0384 |
455
+ | cosine_precision@50 | 0.0257 |
456
+ | cosine_precision@100 | 0.0143 |
457
+ | cosine_recall@1 | 0.1988 |
458
+ | cosine_recall@3 | 0.3261 |
459
+ | cosine_recall@5 | 0.391 |
460
+ | cosine_recall@10 | 0.4756 |
461
+ | cosine_recall@30 | 0.6031 |
462
+ | cosine_recall@50 | 0.6602 |
463
+ | cosine_recall@100 | 0.7195 |
464
+ | cosine_ndcg@10 | 0.3785 |
465
+ | cosine_mrr@10 | 0.4295 |
466
+ | **cosine_map@100** | **0.3193** |
467
+ | dot_accuracy@1 | 0.329 |
468
+ | dot_accuracy@3 | 0.4887 |
469
+ | dot_accuracy@5 | 0.5717 |
470
+ | dot_accuracy@10 | 0.6634 |
471
+ | dot_accuracy@30 | 0.767 |
472
+ | dot_accuracy@50 | 0.8134 |
473
+ | dot_accuracy@100 | 0.8619 |
474
+ | dot_precision@1 | 0.329 |
475
+ | dot_precision@3 | 0.1899 |
476
+ | dot_precision@5 | 0.1387 |
477
+ | dot_precision@10 | 0.0874 |
478
+ | dot_precision@30 | 0.0385 |
479
+ | dot_precision@50 | 0.0257 |
480
+ | dot_precision@100 | 0.0143 |
481
+ | dot_recall@1 | 0.1994 |
482
+ | dot_recall@3 | 0.3259 |
483
+ | dot_recall@5 | 0.3937 |
484
+ | dot_recall@10 | 0.4771 |
485
+ | dot_recall@30 | 0.6044 |
486
+ | dot_recall@50 | 0.6591 |
487
+ | dot_recall@100 | 0.722 |
488
+ | dot_ndcg@10 | 0.3791 |
489
+ | dot_mrr@10 | 0.4305 |
490
+ | dot_map@100 | 0.3195 |
491
+
492
+ <!--
493
+ ## Bias, Risks and Limitations
494
+
495
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
496
+ -->
497
+
498
+ <!--
499
+ ### Recommendations
500
+
501
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
502
+ -->
503
+
504
+ ## Training Details
505
+
506
+ ### Training Dataset
507
+
508
+ #### Unnamed Dataset
509
+
510
+
511
+ * Size: 7,005 training samples
512
+ * Columns: <code>anchor</code> and <code>positive</code>
513
+ * Approximate statistics based on the first 1000 samples:
514
+ | | anchor | positive |
515
+ |:--------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
516
+ | type | string | string |
517
+ | details | <ul><li>min: 8 tokens</li><li>mean: 14.59 tokens</li><li>max: 25 tokens</li></ul> | <ul><li>min: 12 tokens</li><li>mean: 60.98 tokens</li><li>max: 170 tokens</li></ul> |
518
+ * Samples:
519
+ | anchor | positive |
520
+ |:---------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
521
+ | <code>What progress has been made with setting up Snowflake share?</code> | <code>He finally got around to giving me the information necessary to set up Snowflake share.<br>I will be submitting the application to get back set up.<br>Once the database is set up, then we just need to figure out how to configure Snowflake share, which it's going to be in the documentation.<br>We should be set on that end.<br>We also are going to have a conversation with someone named Peter Tsanghen, who's, who owns Jira platform.<br>Great.</code> |
522
+ | <code>Who is Peter Tsanghen and what is the planned interaction with him?</code> | <code>He finally got around to giving me the information necessary to set up Snowflake share.<br>I will be submitting the application to get back set up.<br>Once the database is set up, then we just need to figure out how to configure Snowflake share, which it's going to be in the documentation.<br>We should be set on that end.<br>We also are going to have a conversation with someone named Peter Tsanghen, who's, who owns Jira platform.<br>Great.</code> |
523
+ | <code>Who is Peter Tsanghen and what is the planned interaction with him?</code> | <code>Uh, and so now we just have to meet with Peter.<br>Peter is someone who I used to work with on, he used to work on, uh, syndicated data products.<br>So I used to work with him on that.</code> |
524
+ * Loss: <code>__main__.MultipleNegativesRankingLoss_with_logging</code>
525
+
526
+ ### Training Hyperparameters
527
+ #### Non-Default Hyperparameters
528
+
529
+ - `per_device_train_batch_size`: 4
530
+ - `per_device_eval_batch_size`: 4
531
+ - `num_train_epochs`: 2
532
+ - `max_steps`: 1751
533
+ - `disable_tqdm`: True
534
+ - `multi_dataset_batch_sampler`: round_robin
535
+
536
+ #### All Hyperparameters
537
+ <details><summary>Click to expand</summary>
538
+
539
+ - `overwrite_output_dir`: False
540
+ - `do_predict`: False
541
+ - `prediction_loss_only`: True
542
+ - `per_device_train_batch_size`: 4
543
+ - `per_device_eval_batch_size`: 4
544
+ - `per_gpu_train_batch_size`: None
545
+ - `per_gpu_eval_batch_size`: None
546
+ - `gradient_accumulation_steps`: 1
547
+ - `eval_accumulation_steps`: None
548
+ - `learning_rate`: 5e-05
549
+ - `weight_decay`: 0.0
550
+ - `adam_beta1`: 0.9
551
+ - `adam_beta2`: 0.999
552
+ - `adam_epsilon`: 1e-08
553
+ - `max_grad_norm`: 1
554
+ - `num_train_epochs`: 2
555
+ - `max_steps`: 1751
556
+ - `lr_scheduler_type`: linear
557
+ - `lr_scheduler_kwargs`: {}
558
+ - `warmup_ratio`: 0.0
559
+ - `warmup_steps`: 0
560
+ - `log_level`: passive
561
+ - `log_level_replica`: warning
562
+ - `log_on_each_node`: True
563
+ - `logging_nan_inf_filter`: True
564
+ - `save_safetensors`: True
565
+ - `save_on_each_node`: False
566
+ - `save_only_model`: False
567
+ - `no_cuda`: False
568
+ - `use_cpu`: False
569
+ - `use_mps_device`: False
570
+ - `seed`: 42
571
+ - `data_seed`: None
572
+ - `jit_mode_eval`: False
573
+ - `use_ipex`: False
574
+ - `bf16`: False
575
+ - `fp16`: False
576
+ - `fp16_opt_level`: O1
577
+ - `half_precision_backend`: auto
578
+ - `bf16_full_eval`: False
579
+ - `fp16_full_eval`: False
580
+ - `tf32`: None
581
+ - `local_rank`: 0
582
+ - `ddp_backend`: None
583
+ - `tpu_num_cores`: None
584
+ - `tpu_metrics_debug`: False
585
+ - `debug`: []
586
+ - `dataloader_drop_last`: False
587
+ - `dataloader_num_workers`: 0
588
+ - `dataloader_prefetch_factor`: None
589
+ - `past_index`: -1
590
+ - `disable_tqdm`: True
591
+ - `remove_unused_columns`: True
592
+ - `label_names`: None
593
+ - `load_best_model_at_end`: False
594
+ - `ignore_data_skip`: False
595
+ - `fsdp`: []
596
+ - `fsdp_min_num_params`: 0
597
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
598
+ - `fsdp_transformer_layer_cls_to_wrap`: None
599
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True}
600
+ - `deepspeed`: None
601
+ - `label_smoothing_factor`: 0.0
602
+ - `optim`: adamw_torch
603
+ - `optim_args`: None
604
+ - `adafactor`: False
605
+ - `group_by_length`: False
606
+ - `length_column_name`: length
607
+ - `ddp_find_unused_parameters`: None
608
+ - `ddp_bucket_cap_mb`: None
609
+ - `ddp_broadcast_buffers`: False
610
+ - `dataloader_pin_memory`: True
611
+ - `dataloader_persistent_workers`: False
612
+ - `skip_memory_metrics`: True
613
+ - `use_legacy_prediction_loop`: False
614
+ - `push_to_hub`: False
615
+ - `resume_from_checkpoint`: None
616
+ - `hub_model_id`: None
617
+ - `hub_strategy`: every_save
618
+ - `hub_private_repo`: False
619
+ - `hub_always_push`: False
620
+ - `gradient_checkpointing`: False
621
+ - `gradient_checkpointing_kwargs`: None
622
+ - `include_inputs_for_metrics`: False
623
+ - `fp16_backend`: auto
624
+ - `push_to_hub_model_id`: None
625
+ - `push_to_hub_organization`: None
626
+ - `mp_parameters`:
627
+ - `auto_find_batch_size`: False
628
+ - `full_determinism`: False
629
+ - `torchdynamo`: None
630
+ - `ray_scope`: last
631
+ - `ddp_timeout`: 1800
632
+ - `torch_compile`: False
633
+ - `torch_compile_backend`: None
634
+ - `torch_compile_mode`: None
635
+ - `dispatch_batches`: None
636
+ - `split_batches`: None
637
+ - `include_tokens_per_second`: False
638
+ - `include_num_input_tokens_seen`: False
639
+ - `neftune_noise_alpha`: None
640
+ - `optim_target_modules`: None
641
+ - `batch_sampler`: batch_sampler
642
+ - `multi_dataset_batch_sampler`: round_robin
643
+
644
+ </details>
645
+
646
+ ### Training Logs
647
+ | Epoch | Step | cosine_map@100 |
648
+ |:------:|:----:|:--------------:|
649
+ | 0.0114 | 20 | 0.2538 |
650
+ | 0.0228 | 40 | 0.2601 |
651
+ | 0.0342 | 60 | 0.2724 |
652
+ | 0.0457 | 80 | 0.2911 |
653
+ | 0.0571 | 100 | 0.2976 |
654
+ | 0.0685 | 120 | 0.3075 |
655
+ | 0.0799 | 140 | 0.3071 |
656
+ | 0.0913 | 160 | 0.3111 |
657
+ | 0.1027 | 180 | 0.3193 |
658
+
659
+
660
+ ### Framework Versions
661
+ - Python: 3.10.9
662
+ - Sentence Transformers: 3.0.1
663
+ - Transformers: 4.39.3
664
+ - PyTorch: 2.3.1+cu121
665
+ - Accelerate: 0.31.0
666
+ - Datasets: 2.20.0
667
+ - Tokenizers: 0.15.2
668
+
669
+ ## Citation
670
+
671
+ ### BibTeX
672
+
673
+ #### Sentence Transformers
674
+ ```bibtex
675
+ @inproceedings{reimers-2019-sentence-bert,
676
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
677
+ author = "Reimers, Nils and Gurevych, Iryna",
678
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
679
+ month = "11",
680
+ year = "2019",
681
+ publisher = "Association for Computational Linguistics",
682
+ url = "https://arxiv.org/abs/1908.10084",
683
+ }
684
+ ```
685
+
686
+ <!--
687
+ ## Glossary
688
+
689
+ *Clearly define terms in order to be accessible across audiences.*
690
+ -->
691
+
692
+ <!--
693
+ ## Model Card Authors
694
+
695
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
696
+ -->
697
+
698
+ <!--
699
+ ## Model Card Contact
700
+
701
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
702
+ -->
config.json ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "Alibaba-NLP/gte-large-en-v1.5",
3
+ "architectures": [
4
+ "NewModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.0,
7
+ "auto_map": {
8
+ "AutoConfig": "Alibaba-NLP/new-impl--configuration.NewConfig",
9
+ "AutoModel": "Alibaba-NLP/new-impl--modeling.NewModel",
10
+ "AutoModelForMaskedLM": "Alibaba-NLP/new-impl--modeling.NewForMaskedLM",
11
+ "AutoModelForMultipleChoice": "Alibaba-NLP/new-impl--modeling.NewForMultipleChoice",
12
+ "AutoModelForQuestionAnswering": "Alibaba-NLP/new-impl--modeling.NewForQuestionAnswering",
13
+ "AutoModelForSequenceClassification": "Alibaba-NLP/new-impl--modeling.NewForSequenceClassification",
14
+ "AutoModelForTokenClassification": "Alibaba-NLP/new-impl--modeling.NewForTokenClassification"
15
+ },
16
+ "classifier_dropout": null,
17
+ "hidden_act": "gelu",
18
+ "hidden_dropout_prob": 0.1,
19
+ "hidden_size": 1024,
20
+ "initializer_range": 0.02,
21
+ "intermediate_size": 4096,
22
+ "layer_norm_eps": 1e-12,
23
+ "layer_norm_type": "layer_norm",
24
+ "logn_attention_clip1": false,
25
+ "logn_attention_scale": false,
26
+ "max_position_embeddings": 8192,
27
+ "model_type": "new",
28
+ "num_attention_heads": 16,
29
+ "num_hidden_layers": 24,
30
+ "pack_qkv": true,
31
+ "pad_token_id": 0,
32
+ "position_embedding_type": "rope",
33
+ "rope_scaling": {
34
+ "factor": 2.0,
35
+ "type": "ntk"
36
+ },
37
+ "rope_theta": 160000,
38
+ "torch_dtype": "float32",
39
+ "transformers_version": "4.39.3",
40
+ "type_vocab_size": 2,
41
+ "unpad_inputs": false,
42
+ "use_memory_efficient_attention": false,
43
+ "vocab_size": 30528
44
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.39.3",
5
+ "pytorch": "2.3.1+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4d9dae5a3eca8f599111786bd51511160aa0d052bb14180eeefa1ad805632bdd
3
+ size 1736585680
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 8192,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_lower_case": true,
47
+ "mask_token": "[MASK]",
48
+ "max_length": 8000,
49
+ "model_max_length": 8192,
50
+ "pad_to_multiple_of": null,
51
+ "pad_token": "[PAD]",
52
+ "pad_token_type_id": 0,
53
+ "padding_side": "right",
54
+ "sep_token": "[SEP]",
55
+ "stride": 0,
56
+ "strip_accents": null,
57
+ "tokenize_chinese_chars": true,
58
+ "tokenizer_class": "BertTokenizer",
59
+ "truncation_side": "right",
60
+ "truncation_strategy": "longest_first",
61
+ "unk_token": "[UNK]"
62
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:45f8279a73352f2a9327d1f9247dfe18d8cd76e93bfa679712dddd6c395fc272
3
+ size 5176
vocab.txt ADDED
The diff for this file is too large to render. See raw diff