ganeshanmalhotra007
commited on
Commit
•
e699320
1
Parent(s):
15e5e58
Testing upload of a test model
Browse files- 1_Pooling/config.json +10 -0
- README.md +702 -0
- config.json +44 -0
- config_sentence_transformers.json +10 -0
- model.safetensors +3 -0
- modules.json +14 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +37 -0
- tokenizer.json +0 -0
- tokenizer_config.json +62 -0
- training_args.bin +3 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 1024,
|
3 |
+
"pooling_mode_cls_token": true,
|
4 |
+
"pooling_mode_mean_tokens": false,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,702 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language: []
|
3 |
+
library_name: sentence-transformers
|
4 |
+
tags:
|
5 |
+
- sentence-transformers
|
6 |
+
- sentence-similarity
|
7 |
+
- feature-extraction
|
8 |
+
- generated_from_trainer
|
9 |
+
- dataset_size:7005
|
10 |
+
- loss:MultipleNegativesRankingLoss_with_logging
|
11 |
+
base_model: Alibaba-NLP/gte-large-en-v1.5
|
12 |
+
datasets: []
|
13 |
+
metrics:
|
14 |
+
- cosine_accuracy@1
|
15 |
+
- cosine_accuracy@3
|
16 |
+
- cosine_accuracy@5
|
17 |
+
- cosine_accuracy@10
|
18 |
+
- cosine_accuracy@30
|
19 |
+
- cosine_accuracy@50
|
20 |
+
- cosine_accuracy@100
|
21 |
+
- cosine_precision@1
|
22 |
+
- cosine_precision@3
|
23 |
+
- cosine_precision@5
|
24 |
+
- cosine_precision@10
|
25 |
+
- cosine_precision@30
|
26 |
+
- cosine_precision@50
|
27 |
+
- cosine_precision@100
|
28 |
+
- cosine_recall@1
|
29 |
+
- cosine_recall@3
|
30 |
+
- cosine_recall@5
|
31 |
+
- cosine_recall@10
|
32 |
+
- cosine_recall@30
|
33 |
+
- cosine_recall@50
|
34 |
+
- cosine_recall@100
|
35 |
+
- cosine_ndcg@10
|
36 |
+
- cosine_mrr@10
|
37 |
+
- cosine_map@100
|
38 |
+
- dot_accuracy@1
|
39 |
+
- dot_accuracy@3
|
40 |
+
- dot_accuracy@5
|
41 |
+
- dot_accuracy@10
|
42 |
+
- dot_accuracy@30
|
43 |
+
- dot_accuracy@50
|
44 |
+
- dot_accuracy@100
|
45 |
+
- dot_precision@1
|
46 |
+
- dot_precision@3
|
47 |
+
- dot_precision@5
|
48 |
+
- dot_precision@10
|
49 |
+
- dot_precision@30
|
50 |
+
- dot_precision@50
|
51 |
+
- dot_precision@100
|
52 |
+
- dot_recall@1
|
53 |
+
- dot_recall@3
|
54 |
+
- dot_recall@5
|
55 |
+
- dot_recall@10
|
56 |
+
- dot_recall@30
|
57 |
+
- dot_recall@50
|
58 |
+
- dot_recall@100
|
59 |
+
- dot_ndcg@10
|
60 |
+
- dot_mrr@10
|
61 |
+
- dot_map@100
|
62 |
+
widget:
|
63 |
+
- source_sentence: What are the client's target industries?
|
64 |
+
sentences:
|
65 |
+
- 'Right.
|
66 |
+
|
67 |
+
And also, you know, heavy equipment.
|
68 |
+
|
69 |
+
Okay, I understand.'
|
70 |
+
- 'And there''s a full spectrum.
|
71 |
+
|
72 |
+
It''s all about your order offering.
|
73 |
+
|
74 |
+
Right.
|
75 |
+
|
76 |
+
If you''re offering, like, a full design platform where now we have way more engagement
|
77 |
+
in terms of employee being able to get it from one place, and that could be.
|
78 |
+
|
79 |
+
That could take away again, like, my pitch would be basically being on the show.'
|
80 |
+
- 'Our competitors are billion dollar corporations.
|
81 |
+
|
82 |
+
So Experian Epsilon, which is owned by IPG or publicis, big french company, Axiom,
|
83 |
+
which is owned by IPG.
|
84 |
+
|
85 |
+
Inter public group, huge agency.
|
86 |
+
|
87 |
+
So it''s nice competing against multibillion dollar corporations because they
|
88 |
+
move at the speed of the Statue of Liberty.'
|
89 |
+
- source_sentence: What is the strategy for heating products?
|
90 |
+
sentences:
|
91 |
+
- 'Then when you go in to take a look, you say, okay, I''ve got this.
|
92 |
+
|
93 |
+
Now I need to record my test results so that we do down here.
|
94 |
+
|
95 |
+
And we say, okay, this is me, so I''ll pick myself.
|
96 |
+
|
97 |
+
And here we go.
|
98 |
+
|
99 |
+
So once you''re in here, you say, okay, it''s inspector me.'
|
100 |
+
- 'I don''t think we make any margin on these products.
|
101 |
+
|
102 |
+
I''m going to put it on here, though, because I want to add different ones.
|
103 |
+
|
104 |
+
So three in one and then.
|
105 |
+
|
106 |
+
Underfloor heating?'
|
107 |
+
- 'How are others using it?
|
108 |
+
|
109 |
+
Use cases like.
|
110 |
+
|
111 |
+
Yeah, for example, we have one, one partner, there''s climbo.'
|
112 |
+
- source_sentence: What feature did Aseel request regarding budget information display?
|
113 |
+
sentences:
|
114 |
+
- 'So you want to do your west coast.
|
115 |
+
|
116 |
+
Do you want to do 10:00 a.m.
|
117 |
+
|
118 |
+
on the morning of 13th?'
|
119 |
+
- 'But the only thing that I just was thinking about is, for example, if I was a
|
120 |
+
head teacher and I''m about to approve an order and obviously I go and click on
|
121 |
+
the three dots and it tells me my geo budget department by GL budget and obviously
|
122 |
+
tells you what your total budget is, your spend and what''s remaining.
|
123 |
+
|
124 |
+
Is there a way in which I can see what actually went under proof expenditure?
|
125 |
+
|
126 |
+
So it should be.
|
127 |
+
|
128 |
+
So to see how much has been committed against the budget?'
|
129 |
+
- 'Awesome.
|
130 |
+
|
131 |
+
And speaking of releases, is there any way I''m not getting the.
|
132 |
+
|
133 |
+
And I''m sure Chris probably is.'
|
134 |
+
- source_sentence: Does the customer have any other EAP-like resources available?
|
135 |
+
sentences:
|
136 |
+
- 'Every time I make a post, I get.
|
137 |
+
|
138 |
+
I get just a ton of inquiries, you know?
|
139 |
+
|
140 |
+
And we''re just.
|
141 |
+
|
142 |
+
We''re doing a bunch of cool operational stuff right now, so we''re just trying
|
143 |
+
to get that all figured out, you know?
|
144 |
+
|
145 |
+
Yeah.
|
146 |
+
|
147 |
+
Well, hey, let me give you a rundown of a couple things I''m doing with, like,
|
148 |
+
people in your kind of peripheral.
|
149 |
+
|
150 |
+
Just so you know what we''re trying to do to boost the voices of you and agencies
|
151 |
+
like you.'
|
152 |
+
- 'So we need Kim and Manju.
|
153 |
+
|
154 |
+
We need to account that for production downtime for on 16th.
|
155 |
+
|
156 |
+
No cutover plan.'
|
157 |
+
- 'They''re thinking, well, there we have them already, and they offer all these
|
158 |
+
things.
|
159 |
+
|
160 |
+
This is pretty great, you know, because we also use, so we have Voya life insurance,
|
161 |
+
and through Voya, they offer a couple eap type of resources, too.
|
162 |
+
|
163 |
+
Right.
|
164 |
+
|
165 |
+
So we have additional assistance with another program.
|
166 |
+
|
167 |
+
Right.
|
168 |
+
|
169 |
+
But with our eap, which is through Magellan, they would just usually would just
|
170 |
+
be better than the other comparisons when it came down to it.'
|
171 |
+
- source_sentence: What was Nathan's response to the initial proposal from Global
|
172 |
+
Air U?
|
173 |
+
sentences:
|
174 |
+
- But I was listening to everything that you were talking about.
|
175 |
+
- 'And hopefully that should update now in your account in a second.
|
176 |
+
|
177 |
+
Yeah.
|
178 |
+
|
179 |
+
If you give that a go now, you should see all the way to August 2025.'
|
180 |
+
- 'I don''t see on the proposal.
|
181 |
+
|
182 |
+
I don''t see anything class or the class related.
|
183 |
+
|
184 |
+
Um.
|
185 |
+
|
186 |
+
Oh, so for the course.
|
187 |
+
|
188 |
+
No, no.'
|
189 |
+
pipeline_tag: sentence-similarity
|
190 |
+
model-index:
|
191 |
+
- name: SentenceTransformer based on Alibaba-NLP/gte-large-en-v1.5
|
192 |
+
results:
|
193 |
+
- task:
|
194 |
+
type: information-retrieval
|
195 |
+
name: Information Retrieval
|
196 |
+
dataset:
|
197 |
+
name: Unknown
|
198 |
+
type: unknown
|
199 |
+
metrics:
|
200 |
+
- type: cosine_accuracy@1
|
201 |
+
value: 0.32793959007551243
|
202 |
+
name: Cosine Accuracy@1
|
203 |
+
- type: cosine_accuracy@3
|
204 |
+
value: 0.48975188781014023
|
205 |
+
name: Cosine Accuracy@3
|
206 |
+
- type: cosine_accuracy@5
|
207 |
+
value: 0.5663430420711975
|
208 |
+
name: Cosine Accuracy@5
|
209 |
+
- type: cosine_accuracy@10
|
210 |
+
value: 0.6612729234088457
|
211 |
+
name: Cosine Accuracy@10
|
212 |
+
- type: cosine_accuracy@30
|
213 |
+
value: 0.7669902912621359
|
214 |
+
name: Cosine Accuracy@30
|
215 |
+
- type: cosine_accuracy@50
|
216 |
+
value: 0.8155339805825242
|
217 |
+
name: Cosine Accuracy@50
|
218 |
+
- type: cosine_accuracy@100
|
219 |
+
value: 0.8597626752966558
|
220 |
+
name: Cosine Accuracy@100
|
221 |
+
- type: cosine_precision@1
|
222 |
+
value: 0.32793959007551243
|
223 |
+
name: Cosine Precision@1
|
224 |
+
- type: cosine_precision@3
|
225 |
+
value: 0.1902193455591514
|
226 |
+
name: Cosine Precision@3
|
227 |
+
- type: cosine_precision@5
|
228 |
+
value: 0.13829557713052856
|
229 |
+
name: Cosine Precision@5
|
230 |
+
- type: cosine_precision@10
|
231 |
+
value: 0.08716289104638619
|
232 |
+
name: Cosine Precision@10
|
233 |
+
- type: cosine_precision@30
|
234 |
+
value: 0.038439410284070476
|
235 |
+
name: Cosine Precision@30
|
236 |
+
- type: cosine_precision@50
|
237 |
+
value: 0.025717367853290186
|
238 |
+
name: Cosine Precision@50
|
239 |
+
- type: cosine_precision@100
|
240 |
+
value: 0.014282632146709814
|
241 |
+
name: Cosine Precision@100
|
242 |
+
- type: cosine_recall@1
|
243 |
+
value: 0.19877399359600004
|
244 |
+
name: Cosine Recall@1
|
245 |
+
- type: cosine_recall@3
|
246 |
+
value: 0.32606462218112703
|
247 |
+
name: Cosine Recall@3
|
248 |
+
- type: cosine_recall@5
|
249 |
+
value: 0.39100529100529097
|
250 |
+
name: Cosine Recall@5
|
251 |
+
- type: cosine_recall@10
|
252 |
+
value: 0.475571479940412
|
253 |
+
name: Cosine Recall@10
|
254 |
+
- type: cosine_recall@30
|
255 |
+
value: 0.6031369325867708
|
256 |
+
name: Cosine Recall@30
|
257 |
+
- type: cosine_recall@50
|
258 |
+
value: 0.660217290799815
|
259 |
+
name: Cosine Recall@50
|
260 |
+
- type: cosine_recall@100
|
261 |
+
value: 0.7195099398982894
|
262 |
+
name: Cosine Recall@100
|
263 |
+
- type: cosine_ndcg@10
|
264 |
+
value: 0.3784769275629581
|
265 |
+
name: Cosine Ndcg@10
|
266 |
+
- type: cosine_mrr@10
|
267 |
+
value: 0.42950420369514186
|
268 |
+
name: Cosine Mrr@10
|
269 |
+
- type: cosine_map@100
|
270 |
+
value: 0.3193224907975288
|
271 |
+
name: Cosine Map@100
|
272 |
+
- type: dot_accuracy@1
|
273 |
+
value: 0.3290183387270766
|
274 |
+
name: Dot Accuracy@1
|
275 |
+
- type: dot_accuracy@3
|
276 |
+
value: 0.4886731391585761
|
277 |
+
name: Dot Accuracy@3
|
278 |
+
- type: dot_accuracy@5
|
279 |
+
value: 0.5717367853290184
|
280 |
+
name: Dot Accuracy@5
|
281 |
+
- type: dot_accuracy@10
|
282 |
+
value: 0.6634304207119741
|
283 |
+
name: Dot Accuracy@10
|
284 |
+
- type: dot_accuracy@30
|
285 |
+
value: 0.7669902912621359
|
286 |
+
name: Dot Accuracy@30
|
287 |
+
- type: dot_accuracy@50
|
288 |
+
value: 0.8133764832793959
|
289 |
+
name: Dot Accuracy@50
|
290 |
+
- type: dot_accuracy@100
|
291 |
+
value: 0.8619201725997843
|
292 |
+
name: Dot Accuracy@100
|
293 |
+
- type: dot_precision@1
|
294 |
+
value: 0.3290183387270766
|
295 |
+
name: Dot Precision@1
|
296 |
+
- type: dot_precision@3
|
297 |
+
value: 0.18985976267529667
|
298 |
+
name: Dot Precision@3
|
299 |
+
- type: dot_precision@5
|
300 |
+
value: 0.1387270765911543
|
301 |
+
name: Dot Precision@5
|
302 |
+
- type: dot_precision@10
|
303 |
+
value: 0.08737864077669903
|
304 |
+
name: Dot Precision@10
|
305 |
+
- type: dot_precision@30
|
306 |
+
value: 0.038511326860841424
|
307 |
+
name: Dot Precision@30
|
308 |
+
- type: dot_precision@50
|
309 |
+
value: 0.025652642934196335
|
310 |
+
name: Dot Precision@50
|
311 |
+
- type: dot_precision@100
|
312 |
+
value: 0.0143042071197411
|
313 |
+
name: Dot Precision@100
|
314 |
+
- type: dot_recall@1
|
315 |
+
value: 0.19940326364274585
|
316 |
+
name: Dot Recall@1
|
317 |
+
- type: dot_recall@3
|
318 |
+
value: 0.32588483073919966
|
319 |
+
name: Dot Recall@3
|
320 |
+
- type: dot_recall@5
|
321 |
+
value: 0.39370216263420144
|
322 |
+
name: Dot Recall@5
|
323 |
+
- type: dot_recall@10
|
324 |
+
value: 0.4770997071967946
|
325 |
+
name: Dot Recall@10
|
326 |
+
- type: dot_recall@30
|
327 |
+
value: 0.6043595143918767
|
328 |
+
name: Dot Recall@30
|
329 |
+
- type: dot_recall@50
|
330 |
+
value: 0.659138542148251
|
331 |
+
name: Dot Recall@50
|
332 |
+
- type: dot_recall@100
|
333 |
+
value: 0.7219987671443983
|
334 |
+
name: Dot Recall@100
|
335 |
+
- type: dot_ndcg@10
|
336 |
+
value: 0.3791495475200093
|
337 |
+
name: Dot Ndcg@10
|
338 |
+
- type: dot_mrr@10
|
339 |
+
value: 0.4305302991387128
|
340 |
+
name: Dot Mrr@10
|
341 |
+
- type: dot_map@100
|
342 |
+
value: 0.31951258454174397
|
343 |
+
name: Dot Map@100
|
344 |
+
---
|
345 |
+
|
346 |
+
# SentenceTransformer based on Alibaba-NLP/gte-large-en-v1.5
|
347 |
+
|
348 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Alibaba-NLP/gte-large-en-v1.5](https://huggingface.co/Alibaba-NLP/gte-large-en-v1.5). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
349 |
+
|
350 |
+
## Model Details
|
351 |
+
|
352 |
+
### Model Description
|
353 |
+
- **Model Type:** Sentence Transformer
|
354 |
+
- **Base model:** [Alibaba-NLP/gte-large-en-v1.5](https://huggingface.co/Alibaba-NLP/gte-large-en-v1.5) <!-- at revision 104333d6af6f97649377c2afbde10a7704870c7b -->
|
355 |
+
- **Maximum Sequence Length:** 8192 tokens
|
356 |
+
- **Output Dimensionality:** 1024 tokens
|
357 |
+
- **Similarity Function:** Cosine Similarity
|
358 |
+
<!-- - **Training Dataset:** Unknown -->
|
359 |
+
<!-- - **Language:** Unknown -->
|
360 |
+
<!-- - **License:** Unknown -->
|
361 |
+
|
362 |
+
### Model Sources
|
363 |
+
|
364 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
365 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
366 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
367 |
+
|
368 |
+
### Full Model Architecture
|
369 |
+
|
370 |
+
```
|
371 |
+
SentenceTransformer(
|
372 |
+
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: NewModel
|
373 |
+
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
374 |
+
)
|
375 |
+
```
|
376 |
+
|
377 |
+
## Usage
|
378 |
+
|
379 |
+
### Direct Usage (Sentence Transformers)
|
380 |
+
|
381 |
+
First install the Sentence Transformers library:
|
382 |
+
|
383 |
+
```bash
|
384 |
+
pip install -U sentence-transformers
|
385 |
+
```
|
386 |
+
|
387 |
+
Then you can load this model and run inference.
|
388 |
+
```python
|
389 |
+
from sentence_transformers import SentenceTransformer
|
390 |
+
|
391 |
+
# Download from the 🤗 Hub
|
392 |
+
model = SentenceTransformer("model_3")
|
393 |
+
# Run inference
|
394 |
+
sentences = [
|
395 |
+
"What was Nathan's response to the initial proposal from Global Air U?",
|
396 |
+
"I don't see on the proposal.\nI don't see anything class or the class related.\nUm.\nOh, so for the course.\nNo, no.",
|
397 |
+
'And hopefully that should update now in your account in a second.\nYeah.\nIf you give that a go now, you should see all the way to August 2025.',
|
398 |
+
]
|
399 |
+
embeddings = model.encode(sentences)
|
400 |
+
print(embeddings.shape)
|
401 |
+
# [3, 1024]
|
402 |
+
|
403 |
+
# Get the similarity scores for the embeddings
|
404 |
+
similarities = model.similarity(embeddings, embeddings)
|
405 |
+
print(similarities.shape)
|
406 |
+
# [3, 3]
|
407 |
+
```
|
408 |
+
|
409 |
+
<!--
|
410 |
+
### Direct Usage (Transformers)
|
411 |
+
|
412 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
413 |
+
|
414 |
+
</details>
|
415 |
+
-->
|
416 |
+
|
417 |
+
<!--
|
418 |
+
### Downstream Usage (Sentence Transformers)
|
419 |
+
|
420 |
+
You can finetune this model on your own dataset.
|
421 |
+
|
422 |
+
<details><summary>Click to expand</summary>
|
423 |
+
|
424 |
+
</details>
|
425 |
+
-->
|
426 |
+
|
427 |
+
<!--
|
428 |
+
### Out-of-Scope Use
|
429 |
+
|
430 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
431 |
+
-->
|
432 |
+
|
433 |
+
## Evaluation
|
434 |
+
|
435 |
+
### Metrics
|
436 |
+
|
437 |
+
#### Information Retrieval
|
438 |
+
|
439 |
+
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
|
440 |
+
|
441 |
+
| Metric | Value |
|
442 |
+
|:---------------------|:-----------|
|
443 |
+
| cosine_accuracy@1 | 0.3279 |
|
444 |
+
| cosine_accuracy@3 | 0.4898 |
|
445 |
+
| cosine_accuracy@5 | 0.5663 |
|
446 |
+
| cosine_accuracy@10 | 0.6613 |
|
447 |
+
| cosine_accuracy@30 | 0.767 |
|
448 |
+
| cosine_accuracy@50 | 0.8155 |
|
449 |
+
| cosine_accuracy@100 | 0.8598 |
|
450 |
+
| cosine_precision@1 | 0.3279 |
|
451 |
+
| cosine_precision@3 | 0.1902 |
|
452 |
+
| cosine_precision@5 | 0.1383 |
|
453 |
+
| cosine_precision@10 | 0.0872 |
|
454 |
+
| cosine_precision@30 | 0.0384 |
|
455 |
+
| cosine_precision@50 | 0.0257 |
|
456 |
+
| cosine_precision@100 | 0.0143 |
|
457 |
+
| cosine_recall@1 | 0.1988 |
|
458 |
+
| cosine_recall@3 | 0.3261 |
|
459 |
+
| cosine_recall@5 | 0.391 |
|
460 |
+
| cosine_recall@10 | 0.4756 |
|
461 |
+
| cosine_recall@30 | 0.6031 |
|
462 |
+
| cosine_recall@50 | 0.6602 |
|
463 |
+
| cosine_recall@100 | 0.7195 |
|
464 |
+
| cosine_ndcg@10 | 0.3785 |
|
465 |
+
| cosine_mrr@10 | 0.4295 |
|
466 |
+
| **cosine_map@100** | **0.3193** |
|
467 |
+
| dot_accuracy@1 | 0.329 |
|
468 |
+
| dot_accuracy@3 | 0.4887 |
|
469 |
+
| dot_accuracy@5 | 0.5717 |
|
470 |
+
| dot_accuracy@10 | 0.6634 |
|
471 |
+
| dot_accuracy@30 | 0.767 |
|
472 |
+
| dot_accuracy@50 | 0.8134 |
|
473 |
+
| dot_accuracy@100 | 0.8619 |
|
474 |
+
| dot_precision@1 | 0.329 |
|
475 |
+
| dot_precision@3 | 0.1899 |
|
476 |
+
| dot_precision@5 | 0.1387 |
|
477 |
+
| dot_precision@10 | 0.0874 |
|
478 |
+
| dot_precision@30 | 0.0385 |
|
479 |
+
| dot_precision@50 | 0.0257 |
|
480 |
+
| dot_precision@100 | 0.0143 |
|
481 |
+
| dot_recall@1 | 0.1994 |
|
482 |
+
| dot_recall@3 | 0.3259 |
|
483 |
+
| dot_recall@5 | 0.3937 |
|
484 |
+
| dot_recall@10 | 0.4771 |
|
485 |
+
| dot_recall@30 | 0.6044 |
|
486 |
+
| dot_recall@50 | 0.6591 |
|
487 |
+
| dot_recall@100 | 0.722 |
|
488 |
+
| dot_ndcg@10 | 0.3791 |
|
489 |
+
| dot_mrr@10 | 0.4305 |
|
490 |
+
| dot_map@100 | 0.3195 |
|
491 |
+
|
492 |
+
<!--
|
493 |
+
## Bias, Risks and Limitations
|
494 |
+
|
495 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
496 |
+
-->
|
497 |
+
|
498 |
+
<!--
|
499 |
+
### Recommendations
|
500 |
+
|
501 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
502 |
+
-->
|
503 |
+
|
504 |
+
## Training Details
|
505 |
+
|
506 |
+
### Training Dataset
|
507 |
+
|
508 |
+
#### Unnamed Dataset
|
509 |
+
|
510 |
+
|
511 |
+
* Size: 7,005 training samples
|
512 |
+
* Columns: <code>anchor</code> and <code>positive</code>
|
513 |
+
* Approximate statistics based on the first 1000 samples:
|
514 |
+
| | anchor | positive |
|
515 |
+
|:--------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
|
516 |
+
| type | string | string |
|
517 |
+
| details | <ul><li>min: 8 tokens</li><li>mean: 14.59 tokens</li><li>max: 25 tokens</li></ul> | <ul><li>min: 12 tokens</li><li>mean: 60.98 tokens</li><li>max: 170 tokens</li></ul> |
|
518 |
+
* Samples:
|
519 |
+
| anchor | positive |
|
520 |
+
|:---------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
521 |
+
| <code>What progress has been made with setting up Snowflake share?</code> | <code>He finally got around to giving me the information necessary to set up Snowflake share.<br>I will be submitting the application to get back set up.<br>Once the database is set up, then we just need to figure out how to configure Snowflake share, which it's going to be in the documentation.<br>We should be set on that end.<br>We also are going to have a conversation with someone named Peter Tsanghen, who's, who owns Jira platform.<br>Great.</code> |
|
522 |
+
| <code>Who is Peter Tsanghen and what is the planned interaction with him?</code> | <code>He finally got around to giving me the information necessary to set up Snowflake share.<br>I will be submitting the application to get back set up.<br>Once the database is set up, then we just need to figure out how to configure Snowflake share, which it's going to be in the documentation.<br>We should be set on that end.<br>We also are going to have a conversation with someone named Peter Tsanghen, who's, who owns Jira platform.<br>Great.</code> |
|
523 |
+
| <code>Who is Peter Tsanghen and what is the planned interaction with him?</code> | <code>Uh, and so now we just have to meet with Peter.<br>Peter is someone who I used to work with on, he used to work on, uh, syndicated data products.<br>So I used to work with him on that.</code> |
|
524 |
+
* Loss: <code>__main__.MultipleNegativesRankingLoss_with_logging</code>
|
525 |
+
|
526 |
+
### Training Hyperparameters
|
527 |
+
#### Non-Default Hyperparameters
|
528 |
+
|
529 |
+
- `per_device_train_batch_size`: 4
|
530 |
+
- `per_device_eval_batch_size`: 4
|
531 |
+
- `num_train_epochs`: 2
|
532 |
+
- `max_steps`: 1751
|
533 |
+
- `disable_tqdm`: True
|
534 |
+
- `multi_dataset_batch_sampler`: round_robin
|
535 |
+
|
536 |
+
#### All Hyperparameters
|
537 |
+
<details><summary>Click to expand</summary>
|
538 |
+
|
539 |
+
- `overwrite_output_dir`: False
|
540 |
+
- `do_predict`: False
|
541 |
+
- `prediction_loss_only`: True
|
542 |
+
- `per_device_train_batch_size`: 4
|
543 |
+
- `per_device_eval_batch_size`: 4
|
544 |
+
- `per_gpu_train_batch_size`: None
|
545 |
+
- `per_gpu_eval_batch_size`: None
|
546 |
+
- `gradient_accumulation_steps`: 1
|
547 |
+
- `eval_accumulation_steps`: None
|
548 |
+
- `learning_rate`: 5e-05
|
549 |
+
- `weight_decay`: 0.0
|
550 |
+
- `adam_beta1`: 0.9
|
551 |
+
- `adam_beta2`: 0.999
|
552 |
+
- `adam_epsilon`: 1e-08
|
553 |
+
- `max_grad_norm`: 1
|
554 |
+
- `num_train_epochs`: 2
|
555 |
+
- `max_steps`: 1751
|
556 |
+
- `lr_scheduler_type`: linear
|
557 |
+
- `lr_scheduler_kwargs`: {}
|
558 |
+
- `warmup_ratio`: 0.0
|
559 |
+
- `warmup_steps`: 0
|
560 |
+
- `log_level`: passive
|
561 |
+
- `log_level_replica`: warning
|
562 |
+
- `log_on_each_node`: True
|
563 |
+
- `logging_nan_inf_filter`: True
|
564 |
+
- `save_safetensors`: True
|
565 |
+
- `save_on_each_node`: False
|
566 |
+
- `save_only_model`: False
|
567 |
+
- `no_cuda`: False
|
568 |
+
- `use_cpu`: False
|
569 |
+
- `use_mps_device`: False
|
570 |
+
- `seed`: 42
|
571 |
+
- `data_seed`: None
|
572 |
+
- `jit_mode_eval`: False
|
573 |
+
- `use_ipex`: False
|
574 |
+
- `bf16`: False
|
575 |
+
- `fp16`: False
|
576 |
+
- `fp16_opt_level`: O1
|
577 |
+
- `half_precision_backend`: auto
|
578 |
+
- `bf16_full_eval`: False
|
579 |
+
- `fp16_full_eval`: False
|
580 |
+
- `tf32`: None
|
581 |
+
- `local_rank`: 0
|
582 |
+
- `ddp_backend`: None
|
583 |
+
- `tpu_num_cores`: None
|
584 |
+
- `tpu_metrics_debug`: False
|
585 |
+
- `debug`: []
|
586 |
+
- `dataloader_drop_last`: False
|
587 |
+
- `dataloader_num_workers`: 0
|
588 |
+
- `dataloader_prefetch_factor`: None
|
589 |
+
- `past_index`: -1
|
590 |
+
- `disable_tqdm`: True
|
591 |
+
- `remove_unused_columns`: True
|
592 |
+
- `label_names`: None
|
593 |
+
- `load_best_model_at_end`: False
|
594 |
+
- `ignore_data_skip`: False
|
595 |
+
- `fsdp`: []
|
596 |
+
- `fsdp_min_num_params`: 0
|
597 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
598 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
599 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True}
|
600 |
+
- `deepspeed`: None
|
601 |
+
- `label_smoothing_factor`: 0.0
|
602 |
+
- `optim`: adamw_torch
|
603 |
+
- `optim_args`: None
|
604 |
+
- `adafactor`: False
|
605 |
+
- `group_by_length`: False
|
606 |
+
- `length_column_name`: length
|
607 |
+
- `ddp_find_unused_parameters`: None
|
608 |
+
- `ddp_bucket_cap_mb`: None
|
609 |
+
- `ddp_broadcast_buffers`: False
|
610 |
+
- `dataloader_pin_memory`: True
|
611 |
+
- `dataloader_persistent_workers`: False
|
612 |
+
- `skip_memory_metrics`: True
|
613 |
+
- `use_legacy_prediction_loop`: False
|
614 |
+
- `push_to_hub`: False
|
615 |
+
- `resume_from_checkpoint`: None
|
616 |
+
- `hub_model_id`: None
|
617 |
+
- `hub_strategy`: every_save
|
618 |
+
- `hub_private_repo`: False
|
619 |
+
- `hub_always_push`: False
|
620 |
+
- `gradient_checkpointing`: False
|
621 |
+
- `gradient_checkpointing_kwargs`: None
|
622 |
+
- `include_inputs_for_metrics`: False
|
623 |
+
- `fp16_backend`: auto
|
624 |
+
- `push_to_hub_model_id`: None
|
625 |
+
- `push_to_hub_organization`: None
|
626 |
+
- `mp_parameters`:
|
627 |
+
- `auto_find_batch_size`: False
|
628 |
+
- `full_determinism`: False
|
629 |
+
- `torchdynamo`: None
|
630 |
+
- `ray_scope`: last
|
631 |
+
- `ddp_timeout`: 1800
|
632 |
+
- `torch_compile`: False
|
633 |
+
- `torch_compile_backend`: None
|
634 |
+
- `torch_compile_mode`: None
|
635 |
+
- `dispatch_batches`: None
|
636 |
+
- `split_batches`: None
|
637 |
+
- `include_tokens_per_second`: False
|
638 |
+
- `include_num_input_tokens_seen`: False
|
639 |
+
- `neftune_noise_alpha`: None
|
640 |
+
- `optim_target_modules`: None
|
641 |
+
- `batch_sampler`: batch_sampler
|
642 |
+
- `multi_dataset_batch_sampler`: round_robin
|
643 |
+
|
644 |
+
</details>
|
645 |
+
|
646 |
+
### Training Logs
|
647 |
+
| Epoch | Step | cosine_map@100 |
|
648 |
+
|:------:|:----:|:--------------:|
|
649 |
+
| 0.0114 | 20 | 0.2538 |
|
650 |
+
| 0.0228 | 40 | 0.2601 |
|
651 |
+
| 0.0342 | 60 | 0.2724 |
|
652 |
+
| 0.0457 | 80 | 0.2911 |
|
653 |
+
| 0.0571 | 100 | 0.2976 |
|
654 |
+
| 0.0685 | 120 | 0.3075 |
|
655 |
+
| 0.0799 | 140 | 0.3071 |
|
656 |
+
| 0.0913 | 160 | 0.3111 |
|
657 |
+
| 0.1027 | 180 | 0.3193 |
|
658 |
+
|
659 |
+
|
660 |
+
### Framework Versions
|
661 |
+
- Python: 3.10.9
|
662 |
+
- Sentence Transformers: 3.0.1
|
663 |
+
- Transformers: 4.39.3
|
664 |
+
- PyTorch: 2.3.1+cu121
|
665 |
+
- Accelerate: 0.31.0
|
666 |
+
- Datasets: 2.20.0
|
667 |
+
- Tokenizers: 0.15.2
|
668 |
+
|
669 |
+
## Citation
|
670 |
+
|
671 |
+
### BibTeX
|
672 |
+
|
673 |
+
#### Sentence Transformers
|
674 |
+
```bibtex
|
675 |
+
@inproceedings{reimers-2019-sentence-bert,
|
676 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
677 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
678 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
679 |
+
month = "11",
|
680 |
+
year = "2019",
|
681 |
+
publisher = "Association for Computational Linguistics",
|
682 |
+
url = "https://arxiv.org/abs/1908.10084",
|
683 |
+
}
|
684 |
+
```
|
685 |
+
|
686 |
+
<!--
|
687 |
+
## Glossary
|
688 |
+
|
689 |
+
*Clearly define terms in order to be accessible across audiences.*
|
690 |
+
-->
|
691 |
+
|
692 |
+
<!--
|
693 |
+
## Model Card Authors
|
694 |
+
|
695 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
696 |
+
-->
|
697 |
+
|
698 |
+
<!--
|
699 |
+
## Model Card Contact
|
700 |
+
|
701 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
702 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "Alibaba-NLP/gte-large-en-v1.5",
|
3 |
+
"architectures": [
|
4 |
+
"NewModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.0,
|
7 |
+
"auto_map": {
|
8 |
+
"AutoConfig": "Alibaba-NLP/new-impl--configuration.NewConfig",
|
9 |
+
"AutoModel": "Alibaba-NLP/new-impl--modeling.NewModel",
|
10 |
+
"AutoModelForMaskedLM": "Alibaba-NLP/new-impl--modeling.NewForMaskedLM",
|
11 |
+
"AutoModelForMultipleChoice": "Alibaba-NLP/new-impl--modeling.NewForMultipleChoice",
|
12 |
+
"AutoModelForQuestionAnswering": "Alibaba-NLP/new-impl--modeling.NewForQuestionAnswering",
|
13 |
+
"AutoModelForSequenceClassification": "Alibaba-NLP/new-impl--modeling.NewForSequenceClassification",
|
14 |
+
"AutoModelForTokenClassification": "Alibaba-NLP/new-impl--modeling.NewForTokenClassification"
|
15 |
+
},
|
16 |
+
"classifier_dropout": null,
|
17 |
+
"hidden_act": "gelu",
|
18 |
+
"hidden_dropout_prob": 0.1,
|
19 |
+
"hidden_size": 1024,
|
20 |
+
"initializer_range": 0.02,
|
21 |
+
"intermediate_size": 4096,
|
22 |
+
"layer_norm_eps": 1e-12,
|
23 |
+
"layer_norm_type": "layer_norm",
|
24 |
+
"logn_attention_clip1": false,
|
25 |
+
"logn_attention_scale": false,
|
26 |
+
"max_position_embeddings": 8192,
|
27 |
+
"model_type": "new",
|
28 |
+
"num_attention_heads": 16,
|
29 |
+
"num_hidden_layers": 24,
|
30 |
+
"pack_qkv": true,
|
31 |
+
"pad_token_id": 0,
|
32 |
+
"position_embedding_type": "rope",
|
33 |
+
"rope_scaling": {
|
34 |
+
"factor": 2.0,
|
35 |
+
"type": "ntk"
|
36 |
+
},
|
37 |
+
"rope_theta": 160000,
|
38 |
+
"torch_dtype": "float32",
|
39 |
+
"transformers_version": "4.39.3",
|
40 |
+
"type_vocab_size": 2,
|
41 |
+
"unpad_inputs": false,
|
42 |
+
"use_memory_efficient_attention": false,
|
43 |
+
"vocab_size": 30528
|
44 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.0.1",
|
4 |
+
"transformers": "4.39.3",
|
5 |
+
"pytorch": "2.3.1+cu121"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": null
|
10 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4d9dae5a3eca8f599111786bd51511160aa0d052bb14180eeefa1ad805632bdd
|
3 |
+
size 1736585680
|
modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
}
|
14 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 8192,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"mask_token": {
|
10 |
+
"content": "[MASK]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "[PAD]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"sep_token": {
|
24 |
+
"content": "[SEP]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"unk_token": {
|
31 |
+
"content": "[UNK]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
}
|
37 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"100": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"101": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"102": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"103": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"clean_up_tokenization_spaces": true,
|
45 |
+
"cls_token": "[CLS]",
|
46 |
+
"do_lower_case": true,
|
47 |
+
"mask_token": "[MASK]",
|
48 |
+
"max_length": 8000,
|
49 |
+
"model_max_length": 8192,
|
50 |
+
"pad_to_multiple_of": null,
|
51 |
+
"pad_token": "[PAD]",
|
52 |
+
"pad_token_type_id": 0,
|
53 |
+
"padding_side": "right",
|
54 |
+
"sep_token": "[SEP]",
|
55 |
+
"stride": 0,
|
56 |
+
"strip_accents": null,
|
57 |
+
"tokenize_chinese_chars": true,
|
58 |
+
"tokenizer_class": "BertTokenizer",
|
59 |
+
"truncation_side": "right",
|
60 |
+
"truncation_strategy": "longest_first",
|
61 |
+
"unk_token": "[UNK]"
|
62 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:45f8279a73352f2a9327d1f9247dfe18d8cd76e93bfa679712dddd6c395fc272
|
3 |
+
size 5176
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|