galaxy78 commited on
Commit
a0a655d
1 Parent(s): 51a2bdd

End of training

Browse files
Files changed (1) hide show
  1. README.md +99 -0
README.md ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: bert-base-cased
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - wnut_17
8
+ metrics:
9
+ - precision
10
+ - recall
11
+ - f1
12
+ - accuracy
13
+ model-index:
14
+ - name: my_awesome_wnut_model
15
+ results:
16
+ - task:
17
+ name: Token Classification
18
+ type: token-classification
19
+ dataset:
20
+ name: wnut_17
21
+ type: wnut_17
22
+ config: wnut_17
23
+ split: test
24
+ args: wnut_17
25
+ metrics:
26
+ - name: Precision
27
+ type: precision
28
+ value: 0.55
29
+ - name: Recall
30
+ type: recall
31
+ value: 0.37720111214087115
32
+ - name: F1
33
+ type: f1
34
+ value: 0.44749862561847165
35
+ - name: Accuracy
36
+ type: accuracy
37
+ value: 0.9481063520560827
38
+ ---
39
+
40
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
41
+ should probably proofread and complete it, then remove this comment. -->
42
+
43
+ # my_awesome_wnut_model
44
+
45
+ This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the wnut_17 dataset.
46
+ It achieves the following results on the evaluation set:
47
+ - Loss: 0.3958
48
+ - Precision: 0.55
49
+ - Recall: 0.3772
50
+ - F1: 0.4475
51
+ - Accuracy: 0.9481
52
+
53
+ ## Model description
54
+
55
+ More information needed
56
+
57
+ ## Intended uses & limitations
58
+
59
+ More information needed
60
+
61
+ ## Training and evaluation data
62
+
63
+ More information needed
64
+
65
+ ## Training procedure
66
+
67
+ ### Training hyperparameters
68
+
69
+ The following hyperparameters were used during training:
70
+ - learning_rate: 2e-05
71
+ - train_batch_size: 16
72
+ - eval_batch_size: 16
73
+ - seed: 42
74
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
75
+ - lr_scheduler_type: linear
76
+ - num_epochs: 10
77
+
78
+ ### Training results
79
+
80
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
81
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
82
+ | No log | 1.0 | 213 | 0.2562 | 0.5704 | 0.2929 | 0.3870 | 0.9417 |
83
+ | No log | 2.0 | 426 | 0.2776 | 0.5462 | 0.3179 | 0.4019 | 0.9436 |
84
+ | 0.1469 | 3.0 | 639 | 0.2834 | 0.5453 | 0.3624 | 0.4354 | 0.9475 |
85
+ | 0.1469 | 4.0 | 852 | 0.3004 | 0.5669 | 0.3652 | 0.4442 | 0.9480 |
86
+ | 0.0325 | 5.0 | 1065 | 0.3360 | 0.5858 | 0.3735 | 0.4561 | 0.9482 |
87
+ | 0.0325 | 6.0 | 1278 | 0.3471 | 0.5149 | 0.3855 | 0.4409 | 0.9474 |
88
+ | 0.0325 | 7.0 | 1491 | 0.3883 | 0.5552 | 0.3633 | 0.4392 | 0.9474 |
89
+ | 0.0117 | 8.0 | 1704 | 0.3881 | 0.5602 | 0.3707 | 0.4462 | 0.9477 |
90
+ | 0.0117 | 9.0 | 1917 | 0.4008 | 0.5582 | 0.3689 | 0.4442 | 0.9478 |
91
+ | 0.0051 | 10.0 | 2130 | 0.3958 | 0.55 | 0.3772 | 0.4475 | 0.9481 |
92
+
93
+
94
+ ### Framework versions
95
+
96
+ - Transformers 4.35.2
97
+ - Pytorch 2.1.0+cu118
98
+ - Datasets 2.15.0
99
+ - Tokenizers 0.15.0