a2c-AntBulletEnv-v0 / config.json
gaioNL's picture
Initial commit
5df73f8
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f4290f98310>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f4290f983a0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f4290f98430>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f4290f984c0>", "_build": "<function ActorCriticPolicy._build at 0x7f4290f98550>", "forward": "<function ActorCriticPolicy.forward at 0x7f4290f985e0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f4290f98670>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f4290f98700>", "_predict": "<function ActorCriticPolicy._predict at 0x7f4290f98790>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f4290f98820>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f4290f988b0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f4290f98940>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f4290f89dc0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1687159455035461597, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAIoRbD9oWom/V1iAv1cfpT+ZTsC/cfaRPxVF9b5QzZS/D8mdP7gzD70HMBo/l7sHvwkefr/fUhrAFXjMPheqpr416bi+jnfcvz3NEb4I9RE/9IVIv5Zhwr8QPCq/Lgqev/CLJD9tRoo+iiomP4wnXb87vZo/lQKEv3iVZL9PJiQ/b0/iv5qFnr6DbCe/Y+FAv3SnlT9v8RO/NXyQPhGr3r8Gkuq+g0tHvpiaeD5wld2+KIquvx4oBz0/cqI8NZRzO62Y577zMaU+/qcGv2zWVj/wiyQ/bUaKPooqJj+MJ12/7BUaP3KWl79t3q2/whOfPdifBb9zIFc/bz6Kv7EoDL+TIcu+YSUJP50XLT8xWEK8K+HrPwsw1L3MwSY+jBaDvmcieL9u0Sq/YPytvihJ4z6TYow/X2KTv58Hoj4oYcO/8IskP21Gij6KKiY/jCddvwUVCr9BQju/8qmYvnGjoL7CvR4/d2roPn0oYT5UEnu+whjXvrOcPT4jvjk9B6P6PYUYeD+AJ4k92icDP0HB877Eg50/hJWUvlPrDT5mhce9BUAdviJplD+rBRC+MEEeP/CLJD9tRoo+iiomP4wnXb+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAB9U342AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAwmbNvAAAAAAY6P+/AAAAAFCV/T0AAAAAqujwPwAAAAD4nck9AAAAAHvr6z8AAAAAq/+uPQAAAABskvC/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA02khtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgMWgvr0AAAAAVungvwAAAADAgIW9AAAAAMEr6z8AAAAA3YgYvQAAAABVn+U/AAAAAO/ywj0AAAAAKMXzvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADm0prYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIC//9Q8AAAAAPju+L8AAAAAz/7UvQAAAADdNP0/AAAAAIb2B74AAAAAV/XePwAAAAD/gFq9AAAAAFA4AcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC2Kmm1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACATsMOvQAAAAB5uuy/AAAAAHTWrL0AAAAAh/rzPwAAAAATLNu9AAAAAPLL2z8AAAAAWFgEvgAAAADLgwDAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJnWSdEsrd6MAWyUTegDjAF0lEdAqdf39itq6HV9lChoBkdAmmjhK+SKWWgHTegDaAhHQKndKh7mdRR1fZQoaAZHQJr6p6Ww/xFoB03oA2gIR0Cp3xOWBz3idX2UKGgGR0CYTQmkFfReaAdN6ANoCEdAqd8wzLwF1XV9lChoBkdAnWXXZCfHxWgHTegDaAhHQKnoBhbW3Bp1fZQoaAZHQJ1glQ+EAYJoB03oA2gIR0Cp7Wlsxfv4dX2UKGgGR0Ccd7A3DNyHaAdN6ANoCEdAqe8hs0pEyHV9lChoBkdAnoK74vexfWgHTegDaAhHQKnvM2uPmxN1fZQoaAZHQJ6IvAbhm5FoB03oA2gIR0Cp9JVschkidX2UKGgGR0Cdxqgam4y5aAdN6ANoCEdAqfk/VbzK93V9lChoBkdAmfbIre67NGgHTegDaAhHQKn7HNxlxwR1fZQoaAZHQJ3isXzlLe1oB03oA2gIR0Cp+zFPSDywdX2UKGgGR0CcvcapPykLaAdN6ANoCEdAqgIA2fkFOnV9lChoBkdAm7M/FzdUKmgHTegDaAhHQKoJMwu/UON1fZQoaAZHQJqqfpLVWjpoB03oA2gIR0CqCuTj/+85dX2UKGgGR0CYcnqyWzF/aAdN6ANoCEdAqgr1PP9k0HV9lChoBkdAmOuhpHqeLGgHTegDaAhHQKoQaeWfK6p1fZQoaAZHQJor+4d6syVoB03oA2gIR0CqFRX6Q/5ddX2UKGgGR0CbBUB5ooNNaAdN6ANoCEdAqhbTxRVIZ3V9lChoBkdAm3rv1Hvtt2gHTegDaAhHQKoW5b5/LDB1fZQoaAZHQJsrRArxy4poB03oA2gIR0CqHG9YW+GodX2UKGgGR0CZoJGnGbTdaAdN6ANoCEdAqiMzGvOhTXV9lChoBkdAmm45ZOi35WgHTegDaAhHQKol4nqFAVx1fZQoaAZHQJqfM7hegL9oB03oA2gIR0CqJf/wRXfZdX2UKGgGR0Cbn+MlTm4iaAdN6ANoCEdAqiwVzp5eJHV9lChoBkdAmTjYQz1scmgHTegDaAhHQKowuKwY+B91fZQoaAZHQJzpBPIn0CloB03oA2gIR0CqMnVD8cdYdX2UKGgGR0CdT7ZYxL00aAdN6ANoCEdAqjKJG2Cul3V9lChoBkdAmfPlqesgdWgHTegDaAhHQKo4LijL0SR1fZQoaAZHQJ6A7rSmZVpoB03oA2gIR0CqPX1NYbKidX2UKGgGR0CcMWk9ECvHaAdN6ANoCEdAqj/3xWkrPXV9lChoBkdAnuU0GA08/2gHTegDaAhHQKpAEe0Xxe91fZQoaAZHQJxFWwIMSbpoB03oA2gIR0CqSAEuYhMbdX2UKGgGR0CdtJa9K28aaAdN6ANoCEdAqkyycf/3nXV9lChoBkdAn+qUJOWSlmgHTegDaAhHQKpObdcjZ+R1fZQoaAZHQJ6wsQtjCpFoB03oA2gIR0CqTn779AHFdX2UKGgGR0CauVfW+XZ5aAdN6ANoCEdAqlQOoNutOnV9lChoBkdAm1+J/XoTwmgHTegDaAhHQKpYsC7K7qZ1fZQoaAZHQJ75+NcW0qpoB03oA2gIR0CqWmj0L+gldX2UKGgGR0CfgylvqC6IaAdN6ANoCEdAqlp5mAbyY3V9lChoBkdAm3Zcp5NXYGgHTegDaAhHQKpizabF0gd1fZQoaAZHQJoVaDpTuOVoB03oA2gIR0CqaHtf5ULldX2UKGgGR0CZA6iC8OCoaAdN6ANoCEdAqmo5i/fwZ3V9lChoBkdAmZ/402tMf2gHTegDaAhHQKpqScuJ1q51fZQoaAZHQJ4F8dHUc4poB03oA2gIR0Cqb8JkXk5qdX2UKGgGR0CgWITyauwHaAdN6ANoCEdAqnSSEeyRjnV9lChoBkdAnukgCOmzjWgHTegDaAhHQKp2TCVrylN1fZQoaAZHQJ1B21TisGRoB03oA2gIR0Cqdl0lZ5iWdX2UKGgGR0CfLjqLCN0eaAdN6ANoCEdAqn0JK3/gi3V9lChoBkdAoWAuvB7/oGgHTegDaAhHQKqEWWcjJMh1fZQoaAZHQKCgAz/p+ttoB03oA2gIR0CqhhW4d6sydX2UKGgGR0CgO9Be5WilaAdN6ANoCEdAqoYmmHgxanV9lChoBkdAnjQUZBLPEGgHTegDaAhHQKqLq+XZ5A11fZQoaAZHQJ7FFO0svqVoB03oA2gIR0CqkF+pwS8KdX2UKGgGR0Cf6BraufVaaAdN6ANoCEdAqpIdJOFg2XV9lChoBkdAne0c3Q2MsGgHTegDaAhHQKqSLTkQwsZ1fZQoaAZHQJ/v6n2qT8poB03oA2gIR0Cql65tWMjvdX2UKGgGR0Cgpx7TUiIMaAdN6ANoCEdAqp5eWv8qF3V9lChoBkdAnZIUTL4etGgHTegDaAhHQKqhCtf5ULl1fZQoaAZHQJ/AMfCAMDxoB03oA2gIR0CqoScLjPv8dX2UKGgGR0CeQ3+6iCaraAdN6ANoCEdAqqdZ/5LytnV9lChoBkdAoTsRR0lqrWgHTegDaAhHQKqsCGVRk3F1fZQoaAZHQKEVOHN5dGBoB03oA2gIR0CqrcG7aqS6dX2UKGgGR0CgWpm+K0laaAdN6ANoCEdAqq3Tw+dK/XV9lChoBkdAoNR+e18b72gHTegDaAhHQKqzYu3c5811fZQoaAZHQJ/NNGI9C/poB03oA2gIR0CquJ6/7BO6dX2UKGgGR0Cf08FTvRZ2aAdN6ANoCEdAqrspCtzS1HV9lChoBkdAoSHP18LKFWgHTegDaAhHQKq7RQ4S6Dp1fZQoaAZHQJ7Je1XvH95oB03oA2gIR0Cqw0Dye7L/dX2UKGgGR0CfGZGp++dtaAdN6ANoCEdAqsfy4H5aeXV9lChoBkdAnrslM7EHdGgHTegDaAhHQKrJp13dKul1fZQoaAZHQJ7F86FM7EJoB03oA2gIR0CqybhCtzS1dX2UKGgGR0CfG4SmqHXVaAdN6ANoCEdAqs9M8NhE0HV9lChoBkdAoAm9Y0VJtmgHTegDaAhHQKrUAOwPiDN1fZQoaAZHQJsmFv3rUspoB03oA2gIR0Cq1bz1K5CodX2UKGgGR0Cd59FTefqYaAdN6ANoCEdAqtXNt2s7uHV9lChoBkdAnEe/jwQUYmgHTegDaAhHQKrd6yqMm4R1fZQoaAZHQJl1KV+qioNoB03oA2gIR0Cq46nNX5nEdX2UKGgGR0Cd6lH09QoDaAdN6ANoCEdAquVngk1MunV9lChoBkdAoLnhfUnXumgHTegDaAhHQKrleUNayKN1fZQoaAZHQJtdUP/aQFNoB03oA2gIR0Cq6wIzWPLgdX2UKGgGR0Cej4DGLk0aaAdN6ANoCEdAqu/GiHqNZXV9lChoBkdAnQ+x6Ww/xGgHTegDaAhHQKrxgxRl6JJ1fZQoaAZHQJpjum1pj+doB03oA2gIR0Cq8ZR3u/lAdX2UKGgGR0Cf6HJCBwuNaAdN6ANoCEdAqvgiC4Bmw3V9lChoBkdAmzeG6kIomWgHTegDaAhHQKr/WxX4j8l1fZQoaAZHQJzEELofSx9oB03oA2gIR0CrASoRAbADdX2UKGgGR0Cb41m7aqS6aAdN6ANoCEdAqwE+sq8UVXV9lChoBkdAmITi/GlyimgHTegDaAhHQKsG6WGATZh1fZQoaAZHQJVpM4PwuuloB03oA2gIR0CrC5hqj8DTdX2UKGgGR0CZAsCm/FisaAdN6ANoCEdAqw1QvpQk5nV9lChoBkdAmZbgVCXyAmgHTegDaAhHQKsNYju8brF1fZQoaAZHQJtpX9jwx35oB03oA2gIR0CrEvO+RHPNdX2UKGgGR0CXGtRdhRZVaAdN6ANoCEdAqxmf6O5rg3V9lChoBkdAmQ1Vxn3+M2gHTegDaAhHQKscWmtyPuJ1fZQoaAZHQJkecz9CNS9oB03oA2gIR0CrHHWLYPGydX2UKGgGR0CYOrEa2nbZaAdN6ANoCEdAqyKulKsdUHV9lChoBkdAm6/ruMMqjWgHTegDaAhHQKsnUySmqHZ1fZQoaAZHQJgAzfvWpZRoB03oA2gIR0CrKQrvTgEVdX2UKGgGR0CaM5qmTC+DaAdN6ANoCEdAqykcpI+W4XVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}