Update README.md
Browse files
README.md
CHANGED
@@ -25,7 +25,7 @@ model-index:
|
|
25 |
metrics:
|
26 |
- name: Test WER
|
27 |
type: wer
|
28 |
-
value: 05.
|
29 |
---
|
30 |
|
31 |
# Wav2Vec2-Large-XLSR-53-Nepali
|
@@ -49,7 +49,7 @@ from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
|
49 |
!ls ne_np_female
|
50 |
|
51 |
colnames=['path','sentence']
|
52 |
-
df = pd.read_csv('/content/ne_np_female/line_index.tsv',sep='
|
53 |
df['path'] = '/content/ne_np_female/wavs/'+df['path'] +'.wav'
|
54 |
|
55 |
train, test = train_test_split(df, test_size=0.1)
|
@@ -66,15 +66,15 @@ resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
|
66 |
# Preprocessing the datasets.
|
67 |
# We need to read the aduio files as arrays
|
68 |
def speech_file_to_array_fn(batch):
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
|
73 |
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
74 |
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
|
75 |
|
76 |
with torch.no_grad():
|
77 |
-
|
78 |
|
79 |
predicted_ids = torch.argmax(logits, dim=-1)
|
80 |
|
@@ -105,7 +105,7 @@ import re
|
|
105 |
!ls ne_np_female
|
106 |
|
107 |
colnames=['path','sentence']
|
108 |
-
df = pd.read_csv('/content/ne_np_female/line_index.tsv',sep='
|
109 |
df['path'] = '/content/ne_np_female/wavs/'+df['path'] +'.wav'
|
110 |
|
111 |
train, test = train_test_split(df, test_size=0.1)
|
@@ -119,30 +119,30 @@ processor = Wav2Vec2Processor.from_pretrained("gagan3012/wav2vec2-xlsr-nepali")
|
|
119 |
model = Wav2Vec2ForCTC.from_pretrained("gagan3012/wav2vec2-xlsr-nepali")
|
120 |
model.to("cuda")
|
121 |
|
122 |
-
chars_to_ignore_regex = '[
|
123 |
resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
124 |
|
125 |
# Preprocessing the datasets.
|
126 |
# We need to read the aduio files as arrays
|
127 |
def speech_file_to_array_fn(batch):
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
|
133 |
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
134 |
|
135 |
# Preprocessing the datasets.
|
136 |
# We need to read the aduio files as arrays
|
137 |
def evaluate(batch):
|
138 |
-
|
139 |
|
140 |
-
|
141 |
-
|
142 |
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
|
147 |
result = test_dataset.map(evaluate, batched=True, batch_size=8)
|
148 |
|
@@ -150,7 +150,7 @@ print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"],
|
|
150 |
|
151 |
```
|
152 |
|
153 |
-
**Test Result**:
|
154 |
|
155 |
## Training
|
156 |
|
|
|
25 |
metrics:
|
26 |
- name: Test WER
|
27 |
type: wer
|
28 |
+
value: 05.97
|
29 |
---
|
30 |
|
31 |
# Wav2Vec2-Large-XLSR-53-Nepali
|
|
|
49 |
!ls ne_np_female
|
50 |
|
51 |
colnames=['path','sentence']
|
52 |
+
df = pd.read_csv('/content/ne_np_female/line_index.tsv',sep='\\t',header=None,names = colnames)
|
53 |
df['path'] = '/content/ne_np_female/wavs/'+df['path'] +'.wav'
|
54 |
|
55 |
train, test = train_test_split(df, test_size=0.1)
|
|
|
66 |
# Preprocessing the datasets.
|
67 |
# We need to read the aduio files as arrays
|
68 |
def speech_file_to_array_fn(batch):
|
69 |
+
\tspeech_array, sampling_rate = torchaudio.load(batch["path"])
|
70 |
+
\tbatch["speech"] = resampler(speech_array).squeeze().numpy()
|
71 |
+
\treturn batch
|
72 |
|
73 |
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
74 |
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
|
75 |
|
76 |
with torch.no_grad():
|
77 |
+
\tlogits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
|
78 |
|
79 |
predicted_ids = torch.argmax(logits, dim=-1)
|
80 |
|
|
|
105 |
!ls ne_np_female
|
106 |
|
107 |
colnames=['path','sentence']
|
108 |
+
df = pd.read_csv('/content/ne_np_female/line_index.tsv',sep='\\t',header=None,names = colnames)
|
109 |
df['path'] = '/content/ne_np_female/wavs/'+df['path'] +'.wav'
|
110 |
|
111 |
train, test = train_test_split(df, test_size=0.1)
|
|
|
119 |
model = Wav2Vec2ForCTC.from_pretrained("gagan3012/wav2vec2-xlsr-nepali")
|
120 |
model.to("cuda")
|
121 |
|
122 |
+
chars_to_ignore_regex = '[\\,\\?\\.\\!\\-\\;\\:\\"\\“]'
|
123 |
resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
124 |
|
125 |
# Preprocessing the datasets.
|
126 |
# We need to read the aduio files as arrays
|
127 |
def speech_file_to_array_fn(batch):
|
128 |
+
\tbatch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
|
129 |
+
\tspeech_array, sampling_rate = torchaudio.load(batch["path"])
|
130 |
+
\tbatch["speech"] = resampler(speech_array).squeeze().numpy()
|
131 |
+
\treturn batch
|
132 |
|
133 |
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
134 |
|
135 |
# Preprocessing the datasets.
|
136 |
# We need to read the aduio files as arrays
|
137 |
def evaluate(batch):
|
138 |
+
\tinputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
|
139 |
|
140 |
+
\twith torch.no_grad():
|
141 |
+
\t\tlogits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
|
142 |
|
143 |
+
\tpred_ids = torch.argmax(logits, dim=-1)
|
144 |
+
\tbatch["pred_strings"] = processor.batch_decode(pred_ids)
|
145 |
+
\treturn batch
|
146 |
|
147 |
result = test_dataset.map(evaluate, batched=True, batch_size=8)
|
148 |
|
|
|
150 |
|
151 |
```
|
152 |
|
153 |
+
**Test Result**: 05.97 %
|
154 |
|
155 |
## Training
|
156 |
|