gagan3012 commited on
Commit
825a167
1 Parent(s): 0bf69b8

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +18 -19
README.md CHANGED
@@ -26,7 +26,7 @@ model-index:
26
  value: 48.40
27
  ---
28
 
29
- # Wav2Vec2-Large-XLSR-53-Punjabi
30
 
31
  Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Chuvash using the [Common Voice](https://huggingface.co/datasets/common_voice)
32
 
@@ -52,15 +52,15 @@ resampler = torchaudio.transforms.Resample(48_000, 16_000)
52
  # Preprocessing the datasets.
53
  # We need to read the aduio files as arrays
54
  def speech_file_to_array_fn(batch):
55
- speech_array, sampling_rate = torchaudio.load(batch["path"])
56
- batch["speech"] = resampler(speech_array).squeeze().numpy()
57
- return batch
58
 
59
  test_dataset = test_dataset.map(speech_file_to_array_fn)
60
  inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
61
 
62
  with torch.no_grad():
63
- logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
64
 
65
  predicted_ids = torch.argmax(logits, dim=-1)
66
 
@@ -71,10 +71,9 @@ print("Reference:", test_dataset["sentence"][:2])
71
 
72
  #### Results:
73
 
74
- Prediction: ['ਹਵਾ ਲਾਤ ਵਿੱਚ ਪੰਦ ਛੇ ਇਖਲਾਟਕੀ ਮੁਜਰਮ ਸਨ', 'ਮੈ ਹਾ ਪੈਸੇ ਲੇਹੜ ਨਹੀਂ ਸੀ ਚੌਨਾ']
75
-
76
- Reference: ['ਹਵਾਲਾਤ ਵਿੱਚ ਪੰਜ ਛੇ ਇਖ਼ਲਾਕੀ ਮੁਜਰਮ ਸਨ', 'ਮੈਂ ਇਹ ਪੈਸੇ ਲੈਣੇ ਨਹੀਂ ਸੀ ਚਾਹੁੰਦਾ']
77
 
 
78
  ## Evaluation
79
 
80
  The model can be evaluated as follows on the Chuvash test data of Common Voice.
@@ -99,30 +98,30 @@ model.to("cuda")
99
 
100
 
101
 
102
- chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“]' # TODO: adapt this list to include all special characters you removed from the data
103
  resampler = torchaudio.transforms.Resample(48_000, 16_000)
104
 
105
  # Preprocessing the datasets.
106
  # We need to read the aduio files as arrays
107
  def speech_file_to_array_fn(batch):
108
- batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
109
- speech_array, sampling_rate = torchaudio.load(batch["path"])
110
- batch["speech"] = resampler(speech_array).squeeze().numpy()
111
- return batch
112
 
113
  test_dataset = test_dataset.map(speech_file_to_array_fn)
114
 
115
  # Preprocessing the datasets.
116
  # We need to read the aduio files as arrays
117
  def evaluate(batch):
118
- inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
119
 
120
- with torch.no_grad():
121
- logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
122
 
123
- pred_ids = torch.argmax(logits, dim=-1)
124
- batch["pred_strings"] = processor.batch_decode(pred_ids)
125
- return batch
126
 
127
  result = test_dataset.map(evaluate, batched=True, batch_size=8)
128
 
 
26
  value: 48.40
27
  ---
28
 
29
+ # Wav2Vec2-Large-XLSR-53-Chuvash
30
 
31
  Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Chuvash using the [Common Voice](https://huggingface.co/datasets/common_voice)
32
 
 
52
  # Preprocessing the datasets.
53
  # We need to read the aduio files as arrays
54
  def speech_file_to_array_fn(batch):
55
+ \tspeech_array, sampling_rate = torchaudio.load(batch["path"])
56
+ \tbatch["speech"] = resampler(speech_array).squeeze().numpy()
57
+ \treturn batch
58
 
59
  test_dataset = test_dataset.map(speech_file_to_array_fn)
60
  inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
61
 
62
  with torch.no_grad():
63
+ \tlogits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
64
 
65
  predicted_ids = torch.argmax(logits, dim=-1)
66
 
 
71
 
72
  #### Results:
73
 
74
+ Prediction: ['проектпа килӗшӳллӗн тӗлӗ мероприяти иртермелле', 'твăра çак планета минтӗ пуяни калленнана']
 
 
75
 
76
+ Reference: ['Проектпа килӗшӳллӗн, тӗрлӗ мероприяти ирттермелле.', 'Çак планета питĕ пуян иккен.']
77
  ## Evaluation
78
 
79
  The model can be evaluated as follows on the Chuvash test data of Common Voice.
 
98
 
99
 
100
 
101
+ chars_to_ignore_regex = '[\\,\\?\\.\\!\\-\\;\\:\\"\\“]' # TODO: adapt this list to include all special characters you removed from the data
102
  resampler = torchaudio.transforms.Resample(48_000, 16_000)
103
 
104
  # Preprocessing the datasets.
105
  # We need to read the aduio files as arrays
106
  def speech_file_to_array_fn(batch):
107
+ \tbatch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
108
+ \tspeech_array, sampling_rate = torchaudio.load(batch["path"])
109
+ \tbatch["speech"] = resampler(speech_array).squeeze().numpy()
110
+ \treturn batch
111
 
112
  test_dataset = test_dataset.map(speech_file_to_array_fn)
113
 
114
  # Preprocessing the datasets.
115
  # We need to read the aduio files as arrays
116
  def evaluate(batch):
117
+ \tinputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
118
 
119
+ \twith torch.no_grad():
120
+ \t\tlogits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
121
 
122
+ \tpred_ids = torch.argmax(logits, dim=-1)
123
+ \tbatch["pred_strings"] = processor.batch_decode(pred_ids)
124
+ \treturn batch
125
 
126
  result = test_dataset.map(evaluate, batched=True, batch_size=8)
127