7th lunar lander to push
Browse files- README.md +1 -1
- config.json +1 -1
- ppo-LunarLander-v2-12.zip +3 -0
- ppo-LunarLander-v2-12/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2-12/data +96 -0
- ppo-LunarLander-v2-12/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2-12/policy.pth +3 -0
- ppo-LunarLander-v2-12/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2-12/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value: 284.
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 284.95 +/- 18.85
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x780045866560>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7800458665f0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x780045866680>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x780045866710>", "_build": "<function ActorCriticPolicy._build at 0x7800458667a0>", "forward": "<function ActorCriticPolicy.forward at 0x780045866830>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7800458668c0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x780045866950>", "_predict": "<function ActorCriticPolicy._predict at 0x7800458669e0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x780045866a70>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x780045866b00>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x780045866b90>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x78004586c040>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1705960004932535054, "learning_rate": 0.0007880993941131103, "tensorboard_log": null, "_last_obs": null, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQEt7dqtYB/+MAWyUS1eMAXSUR0CeMKOCXhOydX2UKGgGR0Bx2ReWv8qGaAdLmmgIR0CeMSU7CBPLdX2UKGgGR0Bx3IJu2qkuaAdLz2gIR0CeMcHzH0btdX2UKGgGR0BysIGhVU++aAdLu2gIR0CeMnyu6mO3dX2UKGgGR0ByowxCY1HfaAdLrWgIR0CeMoUYbbUPdX2UKGgGR0BymoXm/336aAdL0mgIR0CeMpkB0ZFYdX2UKGgGR0BxQILVnVXnaAdLsmgIR0CeMrHjIaLodX2UKGgGR0Bz6qQIUrTZaAdLtmgIR0CeMseNkvsadX2UKGgGR0Bx2GNn5BToaAdLwmgIR0CeMtPpY9xIdX2UKGgGR0Bwor7vXsgMaAdLl2gIR0CeMuScslLOdX2UKGgGR0Bzv2HARChOaAdL3GgIR0CeMybvPToddX2UKGgGR0BxkPLmp2lmaAdLnmgIR0CeM4HoouwpdX2UKGgGR0BwXTx2B8QaaAdLo2gIR0CejmLb5/LDdX2UKGgGR0ByfnH6uW8iaAdLzGgIR0CejnkCFK02dX2UKGgGR0BwzjDiwSrYaAdLwWgIR0CejskOI68ydX2UKGgGR0BxfT4zrNW3aAdLmWgIR0CejvTH80k4dX2UKGgGR0ByOTcUM5OraAdLjGgIR0Cej03i704BdX2UKGgGR0B0BWE/SpiraAdL5WgIR0CekHIv8IiUdX2UKGgGR0By+XDNyHVPaAdL8mgIR0CekIWNFSbZdX2UKGgGR0ByQaLUCq6waAdLj2gIR0CekMXN1QqJdX2UKGgGR0BvSB0uDjBEaAdLl2gIR0CekWUL2HtXdX2UKGgGR0BzK/b0voNeaAdLu2gIR0CekXaIeo1ldX2UKGgGR0BxsIqslsxgaAdLt2gIR0CekcVmBe5XdX2UKGgGR0ByftJ6IFeOaAdLxGgIR0Cekb1WbPQfdX2UKGgGR0BwoEu7HyVfaAdLlmgIR0CekdKLbYbsdX2UKGgGR0BxUcT8HfMwaAdLz2gIR0Cekd2606YFdX2UKGgGR0ByrfYsd1dPaAdLzWgIR0CekgJ1q33IdX2UKGgGR0B0KJ0mtyPuaAdL6WgIR0CekrDfm9xqdX2UKGgGR0BxJfLU1AJLaAdLsWgIR0CeksBAv+OwdX2UKGgGR0Bz1zbcoH9naAdLvGgIR0CekzxJNCZ4dX2UKGgGR0By2fyup0fYaAdL0mgIR0Cek2N7SiM6dX2UKGgGR0Bw/TnJT2nLaAdLxmgIR0Cek5C7K7qZdX2UKGgGR0BxQ5PWQOnVaAdLpmgIR0CelAB7NSqEdX2UKGgGR0By0OU6gdwOaAdL5GgIR0CelIbB42S/dX2UKGgGR0ByxSLHdXT3aAdL2GgIR0CelQEkjX4CdX2UKGgGR0BybtuNxVABaAdLy2gIR0CelRDYh+vydX2UKGgGR0BwN+8tf5UMaAdLnmgIR0CelRcVxjridX2UKGgGR0ByJqlQ/HHWaAdLr2gIR0CelSUnG828dX2UKGgGR0BvckJtzjm0aAdLsWgIR0CelYIwM6RydX2UKGgGR0ByypmpVCHAaAdLrWgIR0CelZ7lJYkndX2UKGgGR0Bx7eXfIjnnaAdLuWgIR0Celbh60IC2dX2UKGgGR0By+vF5v99/aAdL1mgIR0Celd0hNdqtdX2UKGgGR0B0STAoG6f8aAdLyGgIR0CeleQtBfKIdX2UKGgGR0BwNqZZ0SyuaAdLo2gIR0Celhm6oVEedX2UKGgGR0BSYi+g13t8aAdLj2gIR0Celn1R+BpYdX2UKGgGR0Bu3/d9Dx9YaAdLpWgIR0CelsRgJC0GdX2UKGgGR0BzSw+aBqbjaAdL0mgIR0CelxCxeLNwdX2UKGgGR0BzMLJ6po9LaAdLyGgIR0Cel1Gff4yodX2UKGgGR0ByEGCFsYVJaAdLq2gIR0Cel3WykbgkdX2UKGgGR0BvKYtL+PzWaAdLnGgIR0CemDvPkaMrdX2UKGgGR0Bx38ePq9oOaAdLhGgIR0CemEncL0BfdX2UKGgGR0Bzw3f8/D+BaAdLxmgIR0CemIsfq5bydX2UKGgGR0BwpfCN0eU7aAdLsGgIR0CemJASnLq2dX2UKGgGR0Bw6yRLbpNcaAdLr2gIR0CemJp3os7NdX2UKGgGR0BzrgD7qIJraAdLzmgIR0CemVGX5WRzdX2UKGgGR0Bxjj8m8dxRaAdLrWgIR0CemWBtDUmVdX2UKGgGR0BzfmAkLQXzaAdL1WgIR0Cemdk4WDYidX2UKGgGR0ByWEUBXCCSaAdLyWgIR0CemkAU+LWJdX2UKGgGR0BxZLzSThYOaAdLr2gIR0CemnFXaJyidX2UKGgGR0BzM2TGHYYjaAdL3WgIR0CemnP1tfoidX2UKGgGR0B0VH4M4LkTaAdL6WgIR0CemoV2A5JcdX2UKGgGR0BzCz3TNMXaaAdLw2gIR0CempVII4VAdX2UKGgGR0BwhN7v5P/JaAdLnmgIR0CemsjnFHawdX2UKGgGR0BxCGfkFOfvaAdLtWgIR0CemxMYdhiLdX2UKGgGR0BGjeVkc0cfaAdLkGgIR0Cemzt7KJVKdX2UKGgGR0BzMeYAsCkoaAdL1GgIR0Cem27K7qY7dX2UKGgGR0BwlURdyDIzaAdLo2gIR0Cem4syi22HdX2UKGgGR0Bwl3bRF7UoaAdLrWgIR0CenAw4KhL5dX2UKGgGR0Bx520Re1KHaAdLr2gIR0CenCcy31BddX2UKGgGR0BwPL0z0pVkaAdLtGgIR0CenEBtk4FSdX2UKGgGR0Bxsc7muDBeaAdLsWgIR0CenPw3o9s8dX2UKGgGR0A5E7jkuHvdaAdLYmgIR0CenW5XEIgOdX2UKGgGR0ByIR0zTF2naAdLtGgIR0CenX58jRlZdX2UKGgGR0ByWhYA80UHaAdLoWgIR0CenaiXpnpTdX2UKGgGR0BymkhHLA58aAdL2GgIR0CenbZUT+NtdX2UKGgGR0ByzXT1CgK4aAdLuGgIR0CenfFvhqCZdX2UKGgGR0ByBkXXRPXTaAdLomgIR0CengYQ8OkMdX2UKGgGR0Bxy3PY4ACGaAdLsGgIR0CengZGrjo7dX2UKGgGR0BzJNFAmiQDaAdLv2gIR0CenkAvcrRTdX2UKGgGR0ByJiHCXQdCaAdLyWgIR0Ceno8ma6SUdX2UKGgGR0Bus34VRDTjaAdLqmgIR0CenvvKEFnqdX2UKGgGR0ByLjRtxdY5aAdLyWgIR0Cen0fra/RFdX2UKGgGR0BySq6g/TsqaAdL3mgIR0Cen4seGO+7dX2UKGgGR0BwtK3azu4PaAdLrmgIR0Cen6pu/DcedX2UKGgGR0ByrulP8AJcaAdLx2gIR0CeoBZkTYdydX2UKGgGR0Bx/pYgaFVUaAdLxGgIR0CeoDC2tuDSdX2UKGgGR0BPEd87ZFodaAdLjWgIR0CeoNlpoK2KdX2UKGgGR0BwFT3oLXtjaAdLk2gIR0CeoPmALApKdX2UKGgGR0BxYH6i0v4/aAdLq2gIR0CeoSKSgXdkdX2UKGgGR0ByT2nsLORlaAdLvGgIR0CeoWwqAjIJdX2UKGgGR0BzoHA2ycCpaAdL4mgIR0CeoYFOO802dX2UKGgGR0ByVf101ZTyaAdLy2gIR0CeoYAEMb3odX2UKGgGR0Bx9cj4YaYNaAdLy2gIR0CeoY74zrNXdX2UKGgGR0ByVfvd/J/5aAdLu2gIR0CeoaitaIN3dX2UKGgGR0BxjU6T4cm0aAdLxWgIR0CeohymQ8wIdX2UKGgGR0BzA9h1DBuXaAdLpWgIR0CeojRs/IKddX2UKGgGR0Bx9od1dPcjaAdLwWgIR0Ceolm3OObRdX2UKGgGR0BxNOVxCIDYaAdLrmgIR0CeouuSOinHdX2UKGgGR0BuHtVcUucuaAdLmGgIR0CeoxlpGnXNdX2UKGgGR0By1Bi9Zid8aAdLrmgIR0Ceo28pkPMCdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 620, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV/QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.996562587958531, "gae_lambda": 0.9633062552672708, "ent_coef": 0.0017624408201107578, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 32, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/NgJAuPSlLhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9J0w6P1dW9hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu121", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x780045866560>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7800458665f0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x780045866680>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x780045866710>", "_build": "<function ActorCriticPolicy._build at 0x7800458667a0>", "forward": "<function ActorCriticPolicy.forward at 0x780045866830>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7800458668c0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x780045866950>", "_predict": "<function ActorCriticPolicy._predict at 0x7800458669e0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x780045866a70>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x780045866b00>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x780045866b90>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x78004586c040>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1705963590825022099, "learning_rate": 0.0005248111544143684, "tensorboard_log": null, "_last_obs": null, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAEAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4gsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHG9I7zTWoaMAWyUS8GMAXSUR0C1jzDs+mm+dX2UKGgGR0Bx3NXiiqQzaAdLz2gIR0C1jzPoFFDwdX2UKGgGR0By+Jmdy1eCaAdLu2gIR0C1jz2aH9FXdX2UKGgGR0BxwGpsGgSOaAdLpmgIR0C1j0EMG5c1dX2UKGgGR0BxjWK3uuzQaAdLxmgIR0C1j1unMt9QdX2UKGgGR0BxpQlnh86WaAdLtGgIR0C1j4x+8XendX2UKGgGR0BySgCjk+5faAdL1GgIR0C1j6S4J/oadX2UKGgGR0Bt0cGs3hn8aAdLu2gIR0C1j7YZAIIGdX2UKGgGR0BxUEE6kqMFaAdLuGgIR0C1j/lk+X7cdX2UKGgGR0Bx85ylvZRLaAdLzGgIR0C1kANdu5z6dX2UKGgGR0BypZqN6w+uaAdLtWgIR0C1kAfo/zJ7dX2UKGgGR0Bzr3BnBciXaAdL0mgIR0C1kBH+VC5VdX2UKGgGR0BwDd+d9UjtaAdLtmgIR0C1kBDollbvdX2UKGgGR0ByYfD3ueBhaAdLw2gIR0C1kC8b70nPdX2UKGgGR0Bxrdc/t6X0aAdLq2gIR0C1kEfKISDidX2UKGgGR0BxA9MRHww1aAdLtmgIR0C1kEv38GcGdX2UKGgGR0Bxx/ZElVtGaAdLxmgIR0C1pwjSw4bTdX2UKGgGR0ByAXxd6cAjaAdLwmgIR0C1pw6gIyCWdX2UKGgGR0BwipS75Ec9aAdLtGgIR0C1pxjp5eJIdX2UKGgGR0ByPmVVxS5zaAdLnGgIR0C1pz0LlV94dX2UKGgGR0BxcsudwvQGaAdLlmgIR0C1p0W2b5M2dX2UKGgGR0B0Ax+G47RwaAdL1GgIR0C1p3i5Zr57dX2UKGgGR0BumtkH2RJVaAdLr2gIR0C1p7OyquKXdX2UKGgGR0BxBVlZowmFaAdLtmgIR0C1p7Z9iMHbdX2UKGgGR0Bx1vXTVlPKaAdNuAFoCEdAtae5IbwSanV9lChoBkdAcB5rxAjY7WgHS6VoCEdAtafQ2tMfzXV9lChoBkdAcc2NbkfcOGgHS8FoCEdAtafUbIcR2HV9lChoBkdAcIfRO1v2oWgHS8NoCEdAtaffnbItDnV9lChoBkdAcjEnwXqJM2gHS9BoCEdAtaf0QtjCpHV9lChoBkdAcXNl/pdKNGgHS7RoCEdAtaf+d4FA3XV9lChoBkdAUfrQSi/O+2gHS6poCEdAtagJKNAC4nV9lChoBkdAcgnSgoPTX2gHS7FoCEdAtagYF0PpZHV9lChoBkdAcnBtO2y9mGgHS8hoCEdAtage/N7jUHV9lChoBkdAcVSo7V8TjGgHS71oCEdAtagws3AEdXV9lChoBkdAcgUWhh6SkmgHS51oCEdAtahgeHSF5HV9lChoBkdAdAYkSmIj4mgHS9VoCEdAtaiBmRNh3XV9lChoBkdAcxhEvTPSlWgHS91oCEdAtaiFFEy+H3V9lChoBkdAboJ7el9Br2gHS6hoCEdAtaiudy1eB3V9lChoBkdAcaiY3vQWvmgHS8JoCEdAtajR7JGOMnV9lChoBkdAcaXeE7GNrGgHS7toCEdAtajnpSrHVHV9lChoBkdAcHwlzltCRmgHS6doCEdAtaj29bor4HV9lChoBkdAcljpn6Eal2gHS8poCEdAtakBGiHqNnV9lChoBkdAcuzrhisnzGgHS+RoCEdAtakMH5aePXV9lChoBkdAcuqvLowEhmgHS8doCEdAtakdId2gWnV9lChoBkdAcsOJQ+EAYGgHTTQDaAhHQLWpHogFHJ91fZQoaAZHQHBi1HavicZoB0vAaAhHQLWpJyCnP3V1fZQoaAZHQHLrowh4dIZoB0vgaAhHQLWpK3hXKbN1fZQoaAZHQHHacV1wHZ9oB0uqaAhHQLWpL/X5FgF1fZQoaAZHQHJftxAB1cNoB0vOaAhHQLWpRLYwqRV1fZQoaAZHQHISZlFtsN5oB0vNaAhHQLWpSeuFHrh1fZQoaAZHQHCm2pEQXhxoB0ufaAhHQLWpZ/h2nsN1fZQoaAZHQHA5j9GZuyhoB0u7aAhHQLWpbPrv9cd1fZQoaAZHQHMX3VwxWT5oB0vRaAhHQLWppRf4REp1fZQoaAZHQHQieQp4KQdoB0vlaAhHQLWp8yULUkR1fZQoaAZHQHMQL5AQg9xoB0vDaAhHQLWp9Vy3kPt1fZQoaAZHQHN5MWbgCOpoB0vRaAhHQLWp94/NZ/11fZQoaAZHQHJW10cOskpoB0uyaAhHQLWp/hEBsAN1fZQoaAZHQHMuqwIMSbpoB0vLaAhHQLWqDedCmdl1fZQoaAZHQHQlwWSEDhdoB0u8aAhHQLWqJD4QBgh1fZQoaAZHQHIS84LkS29oB0vXaAhHQLWqJbDdgv11fZQoaAZHQHItKYVqN6xoB0u6aAhHQLWqJow22oh1fZQoaAZHQHJOV4HHFP1oB0vMaAhHQLWqL/smfGx1fZQoaAZHQHDttilSCOFoB0uwaAhHQLWqOW5Yoy91fZQoaAZHQHHDnWOIZZVoB0vUaAhHQLWqOzlLeyl1fZQoaAZHQHRZd/8VHnVoB0vFaAhHQLWqOZ9uxbB1fZQoaAZHQHCnf8MuvlloB0vEaAhHQLWqS6/7BO51fZQoaAZHQHNWcOskpqhoB0u9aAhHQLWqZXSSeRR1fZQoaAZHQHIJ1Y+0PYpoB0vIaAhHQLWqeHqu8sd1fZQoaAZHQHEoMA7xNItoB0vMaAhHQLWqup1RtP51fZQoaAZHQHJnRpQDV6NoB0uqaAhHQLWq0W56MR91fZQoaAZHQHFPIgRsdktoB0uwaAhHQLWq5mHP/rB1fZQoaAZHQHCS5ZKWcBloB0u9aAhHQLWq8Km8/Ux1fZQoaAZHQHGkdoSL61toB0vKaAhHQLWrA/iHZbp1fZQoaAZHQHNJ2o3rD65oB0u+aAhHQLWrCky1uzh1fZQoaAZHQHGRk34sVcloB0upaAhHQLWrEk1Mue11fZQoaAZHQHHKyKvV3EBoB0u9aAhHQLWrKHh0heR1fZQoaAZHQHF3fms/6ftoB0uzaAhHQLWrN/iYLLJ1fZQoaAZHQHHT+B6KLsNoB0vFaAhHQLWrPdsBQvZ1fZQoaAZHQHGxYczZYgdoB0vPaAhHQLWrTiKiwjd1fZQoaAZHQHBq94mkWRBoB0vFaAhHQLWrV2uxKQJ1fZQoaAZHQHOdQx33YcxoB0vFaAhHQLWrWZ1V5rx1fZQoaAZHQHJfTeCTUy5oB0u3aAhHQLWrfe+23KB1fZQoaAZHQHNIAx33YcxoB0vZaAhHQLWrkoP07Kd1fZQoaAZHQHD/USuhbnpoB0vGaAhHQLWrsCfpUxV1fZQoaAZHQHGg9+CsfaJoB0u1aAhHQLWr5yRjjJd1fZQoaAZHQHCdWwRoRI1oB0uxaAhHQLWsALmZE2J1fZQoaAZHQHC3w3kxREZoB0u1aAhHQLWsIW/ag291fZQoaAZHQHIwqUaAFxJoB0uoaAhHQLWsOJEYwZh1fZQoaAZHQHPSojKPn0VoB0uwaAhHQLWsTwR5C4V1fZQoaAZHQHHIZ2IO6NFoB0vKaAhHQLWsUtcfNiZ1fZQoaAZHQG/oue8PFvRoB0uiaAhHQLWsVb5/LDB1fZQoaAZHQHHSOWrwOONoB0vMaAhHQLWscJHiFTN1fZQoaAZHQHC96dpZfUpoB0vCaAhHQLWsg+LFXJZ1fZQoaAZHQHJ5OWa+evpoB0u4aAhHQLWsk/nGKht1fZQoaAZHQHJzjRQaaThoB0vKaAhHQLWsopUgjhV1fZQoaAZHQHPd+2mYSg5oB0vAaAhHQLWsqtMfzSV1fZQoaAZHQHBq4R28qWloB0ulaAhHQLWsu2l2vB91fZQoaAZHQHHmZ/G2kSFoB0vRaAhHQLWs9qj8DSx1fZQoaAZHQHNr8xsVLzxoB0voaAhHQLWs+FF2FFl1fZQoaAZHQHLZAmmce8xoB0vDaAhHQLWtFNIsiB51ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 620, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV/QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.9980331419912533, "gae_lambda": 0.9732726375562474, "ent_coef": 0.0019277118336484737, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 32, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/QZuDGbrdOhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9BMm9fVSNvhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu121", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2-12.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9382ed7e4d1376e4d9e6e83da76c5be2e43dd4b2dc76a64ac1d981e06c5977b2
|
3 |
+
size 147257
|
ppo-LunarLander-v2-12/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v2-12/data
ADDED
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x780045866560>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7800458665f0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x780045866680>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x780045866710>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7800458667a0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x780045866830>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7800458668c0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x780045866950>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7800458669e0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x780045866a70>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x780045866b00>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x780045866b90>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x78004586c040>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1015808,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1705963590825022099,
|
30 |
+
"learning_rate": 0.0005248111544143684,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": null,
|
33 |
+
"_last_episode_starts": {
|
34 |
+
":type:": "<class 'numpy.ndarray'>",
|
35 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAEAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
36 |
+
},
|
37 |
+
"_last_original_obs": null,
|
38 |
+
"_episode_num": 0,
|
39 |
+
"use_sde": false,
|
40 |
+
"sde_sample_freq": -1,
|
41 |
+
"_current_progress_remaining": -0.015808000000000044,
|
42 |
+
"_stats_window_size": 100,
|
43 |
+
"ep_info_buffer": {
|
44 |
+
":type:": "<class 'collections.deque'>",
|
45 |
+
":serialized:": "gAWV4gsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHG9I7zTWoaMAWyUS8GMAXSUR0C1jzDs+mm+dX2UKGgGR0Bx3NXiiqQzaAdLz2gIR0C1jzPoFFDwdX2UKGgGR0By+Jmdy1eCaAdLu2gIR0C1jz2aH9FXdX2UKGgGR0BxwGpsGgSOaAdLpmgIR0C1j0EMG5c1dX2UKGgGR0BxjWK3uuzQaAdLxmgIR0C1j1unMt9QdX2UKGgGR0BxpQlnh86WaAdLtGgIR0C1j4x+8XendX2UKGgGR0BySgCjk+5faAdL1GgIR0C1j6S4J/oadX2UKGgGR0Bt0cGs3hn8aAdLu2gIR0C1j7YZAIIGdX2UKGgGR0BxUEE6kqMFaAdLuGgIR0C1j/lk+X7cdX2UKGgGR0Bx85ylvZRLaAdLzGgIR0C1kANdu5z6dX2UKGgGR0BypZqN6w+uaAdLtWgIR0C1kAfo/zJ7dX2UKGgGR0Bzr3BnBciXaAdL0mgIR0C1kBH+VC5VdX2UKGgGR0BwDd+d9UjtaAdLtmgIR0C1kBDollbvdX2UKGgGR0ByYfD3ueBhaAdLw2gIR0C1kC8b70nPdX2UKGgGR0Bxrdc/t6X0aAdLq2gIR0C1kEfKISDidX2UKGgGR0BxA9MRHww1aAdLtmgIR0C1kEv38GcGdX2UKGgGR0Bxx/ZElVtGaAdLxmgIR0C1pwjSw4bTdX2UKGgGR0ByAXxd6cAjaAdLwmgIR0C1pw6gIyCWdX2UKGgGR0BwipS75Ec9aAdLtGgIR0C1pxjp5eJIdX2UKGgGR0ByPmVVxS5zaAdLnGgIR0C1pz0LlV94dX2UKGgGR0BxcsudwvQGaAdLlmgIR0C1p0W2b5M2dX2UKGgGR0B0Ax+G47RwaAdL1GgIR0C1p3i5Zr57dX2UKGgGR0BumtkH2RJVaAdLr2gIR0C1p7OyquKXdX2UKGgGR0BxBVlZowmFaAdLtmgIR0C1p7Z9iMHbdX2UKGgGR0Bx1vXTVlPKaAdNuAFoCEdAtae5IbwSanV9lChoBkdAcB5rxAjY7WgHS6VoCEdAtafQ2tMfzXV9lChoBkdAcc2NbkfcOGgHS8FoCEdAtafUbIcR2HV9lChoBkdAcIfRO1v2oWgHS8NoCEdAtaffnbItDnV9lChoBkdAcjEnwXqJM2gHS9BoCEdAtaf0QtjCpHV9lChoBkdAcXNl/pdKNGgHS7RoCEdAtaf+d4FA3XV9lChoBkdAUfrQSi/O+2gHS6poCEdAtagJKNAC4nV9lChoBkdAcgnSgoPTX2gHS7FoCEdAtagYF0PpZHV9lChoBkdAcnBtO2y9mGgHS8hoCEdAtage/N7jUHV9lChoBkdAcVSo7V8TjGgHS71oCEdAtagws3AEdXV9lChoBkdAcgUWhh6SkmgHS51oCEdAtahgeHSF5HV9lChoBkdAdAYkSmIj4mgHS9VoCEdAtaiBmRNh3XV9lChoBkdAcxhEvTPSlWgHS91oCEdAtaiFFEy+H3V9lChoBkdAboJ7el9Br2gHS6hoCEdAtaiudy1eB3V9lChoBkdAcaiY3vQWvmgHS8JoCEdAtajR7JGOMnV9lChoBkdAcaXeE7GNrGgHS7toCEdAtajnpSrHVHV9lChoBkdAcHwlzltCRmgHS6doCEdAtaj29bor4HV9lChoBkdAcljpn6Eal2gHS8poCEdAtakBGiHqNnV9lChoBkdAcuzrhisnzGgHS+RoCEdAtakMH5aePXV9lChoBkdAcuqvLowEhmgHS8doCEdAtakdId2gWnV9lChoBkdAcsOJQ+EAYGgHTTQDaAhHQLWpHogFHJ91fZQoaAZHQHBi1HavicZoB0vAaAhHQLWpJyCnP3V1fZQoaAZHQHLrowh4dIZoB0vgaAhHQLWpK3hXKbN1fZQoaAZHQHHacV1wHZ9oB0uqaAhHQLWpL/X5FgF1fZQoaAZHQHJftxAB1cNoB0vOaAhHQLWpRLYwqRV1fZQoaAZHQHISZlFtsN5oB0vNaAhHQLWpSeuFHrh1fZQoaAZHQHCm2pEQXhxoB0ufaAhHQLWpZ/h2nsN1fZQoaAZHQHA5j9GZuyhoB0u7aAhHQLWpbPrv9cd1fZQoaAZHQHMX3VwxWT5oB0vRaAhHQLWppRf4REp1fZQoaAZHQHQieQp4KQdoB0vlaAhHQLWp8yULUkR1fZQoaAZHQHMQL5AQg9xoB0vDaAhHQLWp9Vy3kPt1fZQoaAZHQHN5MWbgCOpoB0vRaAhHQLWp94/NZ/11fZQoaAZHQHJW10cOskpoB0uyaAhHQLWp/hEBsAN1fZQoaAZHQHMuqwIMSbpoB0vLaAhHQLWqDedCmdl1fZQoaAZHQHQlwWSEDhdoB0u8aAhHQLWqJD4QBgh1fZQoaAZHQHIS84LkS29oB0vXaAhHQLWqJbDdgv11fZQoaAZHQHItKYVqN6xoB0u6aAhHQLWqJow22oh1fZQoaAZHQHJOV4HHFP1oB0vMaAhHQLWqL/smfGx1fZQoaAZHQHDttilSCOFoB0uwaAhHQLWqOW5Yoy91fZQoaAZHQHHDnWOIZZVoB0vUaAhHQLWqOzlLeyl1fZQoaAZHQHRZd/8VHnVoB0vFaAhHQLWqOZ9uxbB1fZQoaAZHQHCnf8MuvlloB0vEaAhHQLWqS6/7BO51fZQoaAZHQHNWcOskpqhoB0u9aAhHQLWqZXSSeRR1fZQoaAZHQHIJ1Y+0PYpoB0vIaAhHQLWqeHqu8sd1fZQoaAZHQHEoMA7xNItoB0vMaAhHQLWqup1RtP51fZQoaAZHQHJnRpQDV6NoB0uqaAhHQLWq0W56MR91fZQoaAZHQHFPIgRsdktoB0uwaAhHQLWq5mHP/rB1fZQoaAZHQHCS5ZKWcBloB0u9aAhHQLWq8Km8/Ux1fZQoaAZHQHGkdoSL61toB0vKaAhHQLWrA/iHZbp1fZQoaAZHQHNJ2o3rD65oB0u+aAhHQLWrCky1uzh1fZQoaAZHQHGRk34sVcloB0upaAhHQLWrEk1Mue11fZQoaAZHQHHKyKvV3EBoB0u9aAhHQLWrKHh0heR1fZQoaAZHQHF3fms/6ftoB0uzaAhHQLWrN/iYLLJ1fZQoaAZHQHHT+B6KLsNoB0vFaAhHQLWrPdsBQvZ1fZQoaAZHQHGxYczZYgdoB0vPaAhHQLWrTiKiwjd1fZQoaAZHQHBq94mkWRBoB0vFaAhHQLWrV2uxKQJ1fZQoaAZHQHOdQx33YcxoB0vFaAhHQLWrWZ1V5rx1fZQoaAZHQHJfTeCTUy5oB0u3aAhHQLWrfe+23KB1fZQoaAZHQHNIAx33YcxoB0vZaAhHQLWrkoP07Kd1fZQoaAZHQHD/USuhbnpoB0vGaAhHQLWrsCfpUxV1fZQoaAZHQHGg9+CsfaJoB0u1aAhHQLWr5yRjjJd1fZQoaAZHQHCdWwRoRI1oB0uxaAhHQLWsALmZE2J1fZQoaAZHQHC3w3kxREZoB0u1aAhHQLWsIW/ag291fZQoaAZHQHIwqUaAFxJoB0uoaAhHQLWsOJEYwZh1fZQoaAZHQHPSojKPn0VoB0uwaAhHQLWsTwR5C4V1fZQoaAZHQHHIZ2IO6NFoB0vKaAhHQLWsUtcfNiZ1fZQoaAZHQG/oue8PFvRoB0uiaAhHQLWsVb5/LDB1fZQoaAZHQHHSOWrwOONoB0vMaAhHQLWscJHiFTN1fZQoaAZHQHC96dpZfUpoB0vCaAhHQLWsg+LFXJZ1fZQoaAZHQHJ5OWa+evpoB0u4aAhHQLWsk/nGKht1fZQoaAZHQHJzjRQaaThoB0vKaAhHQLWsopUgjhV1fZQoaAZHQHPd+2mYSg5oB0vAaAhHQLWsqtMfzSV1fZQoaAZHQHBq4R28qWloB0ulaAhHQLWsu2l2vB91fZQoaAZHQHHmZ/G2kSFoB0vRaAhHQLWs9qj8DSx1fZQoaAZHQHNr8xsVLzxoB0voaAhHQLWs+FF2FFl1fZQoaAZHQHLZAmmce8xoB0vDaAhHQLWtFNIsiB51ZS4="
|
46 |
+
},
|
47 |
+
"ep_success_buffer": {
|
48 |
+
":type:": "<class 'collections.deque'>",
|
49 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
50 |
+
},
|
51 |
+
"_n_updates": 620,
|
52 |
+
"observation_space": {
|
53 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
54 |
+
":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
55 |
+
"dtype": "float32",
|
56 |
+
"bounded_below": "[ True True True True True True True True]",
|
57 |
+
"bounded_above": "[ True True True True True True True True]",
|
58 |
+
"_shape": [
|
59 |
+
8
|
60 |
+
],
|
61 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
62 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
63 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
64 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
65 |
+
"_np_random": null
|
66 |
+
},
|
67 |
+
"action_space": {
|
68 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
69 |
+
":serialized:": "gAWV/QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
70 |
+
"n": "4",
|
71 |
+
"start": "0",
|
72 |
+
"_shape": [],
|
73 |
+
"dtype": "int64",
|
74 |
+
"_np_random": null
|
75 |
+
},
|
76 |
+
"n_envs": 16,
|
77 |
+
"n_steps": 1024,
|
78 |
+
"gamma": 0.9980331419912533,
|
79 |
+
"gae_lambda": 0.9732726375562474,
|
80 |
+
"ent_coef": 0.0019277118336484737,
|
81 |
+
"vf_coef": 0.5,
|
82 |
+
"max_grad_norm": 0.5,
|
83 |
+
"batch_size": 32,
|
84 |
+
"n_epochs": 10,
|
85 |
+
"clip_range": {
|
86 |
+
":type:": "<class 'function'>",
|
87 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/QZuDGbrdOhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
88 |
+
},
|
89 |
+
"clip_range_vf": null,
|
90 |
+
"normalize_advantage": true,
|
91 |
+
"target_kl": null,
|
92 |
+
"lr_schedule": {
|
93 |
+
":type:": "<class 'function'>",
|
94 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9BMm9fVSNvhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
95 |
+
}
|
96 |
+
}
|
ppo-LunarLander-v2-12/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3ad77a8a52b31ddd184488887d81fd1dc118eadb4802965eb888523058a3135d
|
3 |
+
size 88490
|
ppo-LunarLander-v2-12/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3f615018d25d9f67edec4b093aad58d7c94d53f4a38f3aec25263f204c60af07
|
3 |
+
size 43762
|
ppo-LunarLander-v2-12/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
3 |
+
size 864
|
ppo-LunarLander-v2-12/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.1.0+cu121
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.23.5
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward": 284.
|
|
|
1 |
+
{"mean_reward": 284.95021846810073, "std_reward": 18.851357674875093, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-01-22T23:23:26.085781"}
|