End of training
Browse files- README.md +13 -19
- pytorch_model.bin +1 -1
README.md
CHANGED
@@ -1,10 +1,8 @@
|
|
1 |
---
|
2 |
license: other
|
3 |
-
base_model:
|
4 |
tags:
|
5 |
- generated_from_trainer
|
6 |
-
datasets:
|
7 |
-
- scene_parse_150
|
8 |
model-index:
|
9 |
- name: segformer-b0-scene-parse-150
|
10 |
results: []
|
@@ -15,14 +13,14 @@ should probably proofread and complete it, then remove this comment. -->
|
|
15 |
|
16 |
# segformer-b0-scene-parse-150
|
17 |
|
18 |
-
This model is a fine-tuned version of [
|
19 |
It achieves the following results on the evaluation set:
|
20 |
-
- Loss:
|
21 |
-
- Mean Iou: 0.
|
22 |
-
- Mean Accuracy: 0.
|
23 |
-
- Overall Accuracy: 0.
|
24 |
-
- Per Category Iou: [0.
|
25 |
-
- Per Category Accuracy: [0.
|
26 |
|
27 |
## Model description
|
28 |
|
@@ -42,8 +40,8 @@ More information needed
|
|
42 |
|
43 |
The following hyperparameters were used during training:
|
44 |
- learning_rate: 6e-05
|
45 |
-
- train_batch_size:
|
46 |
-
- eval_batch_size:
|
47 |
- seed: 42
|
48 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
49 |
- lr_scheduler_type: linear
|
@@ -51,13 +49,9 @@ The following hyperparameters were used during training:
|
|
51 |
|
52 |
### Training results
|
53 |
|
54 |
-
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Per Category Iou
|
55 |
-
|
56 |
-
|
|
57 |
-
| 3.6347 | 2.0 | 40 | 3.5674 | 0.0555 | 0.1351 | 0.4366 | [0.37577073102588626, 0.507346436067792, 0.7429683161481081, 0.23907579531108764, 0.5818840703737301, 0.14949183233655108, 0.046892337670538776, 0.0, 0.0, 0.0, 0.0006549043761645994, 0.003635267747829199, 0.2393301269552407, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | [0.8858445637855913, 0.6725728839089117, 0.8940619228876276, 0.8160279108519058, 0.8927399987586477, 0.9851260504201681, 0.9515499145716377, nan, 0.0, 0.0, 0.0006551393340976625, 0.004487328528249244, 0.24638133684234004, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] |
|
58 |
-
| 3.3739 | 3.0 | 60 | 3.4325 | 0.0540 | 0.1343 | 0.4345 | [0.3931353314298779, 0.5473345728972985, 0.5605308184651546, 0.27310002437997294, 0.5805699150469913, 0.23971139505824499, 0.042515474233820315, 0.0, 0.0, 0.0, 0.00012465330798716072, 0.004730406108308634, 0.11034163340023379, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | [0.7492197791062924, 0.7192496306218775, 0.8786557035070371, 0.9624557383878358, 0.9209401811419486, 0.9994957983193278, 0.9644251891628021, nan, 0.0, 0.0, 0.00012478844459003097, 0.0056033480585910254, 0.11158195240537949, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] |
|
59 |
-
| 2.7294 | 4.0 | 80 | 3.5095 | 0.0588 | 0.1365 | 0.4391 | [0.4367203759211508, 0.5260393891311319, 0.766558679562061, 0.24752678821217544, 0.5941136782621366, 0.1820021152342852, 0.03941723696794307, 0.0, 0.0, 0.0, 0.0, 0.0030525762452389953, 0.14415391768326433, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | [0.8451970817712028, 0.726171517928493, 0.8782357801769096, 0.9559987502603624, 0.8954948460006971, 0.9978151260504202, 0.9682694654625336, nan, 0.0, 0.0, 0.0, 0.003847942338990932, 0.145214889488592, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] |
|
60 |
-
| 3.7789 | 5.0 | 100 | 3.4665 | 0.0596 | 0.1359 | 0.4392 | [0.4369308289136906, 0.5390531861708264, 0.7806619522280952, 0.25341104919885854, 0.5939211557701883, 0.21029731689630166, 0.03775321846661953, 0.0, 0.0, 0.0, 0.0, 0.002723446397623174, 0.12626911992906228, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] | [0.8276826426182997, 0.7252631639463956, 0.8762896838835232, 0.9514163715892522, 0.908369101786115, 0.9991596638655462, 0.970954356846473, nan, 0.0, 0.0, 0.0, 0.003452685421994885, 0.12703793741775765, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan] |
|
61 |
|
62 |
|
63 |
### Framework versions
|
|
|
1 |
---
|
2 |
license: other
|
3 |
+
base_model: google/deeplabv3_mobilenet_v2_1.0_513
|
4 |
tags:
|
5 |
- generated_from_trainer
|
|
|
|
|
6 |
model-index:
|
7 |
- name: segformer-b0-scene-parse-150
|
8 |
results: []
|
|
|
13 |
|
14 |
# segformer-b0-scene-parse-150
|
15 |
|
16 |
+
This model is a fine-tuned version of [google/deeplabv3_mobilenet_v2_1.0_513](https://huggingface.co/google/deeplabv3_mobilenet_v2_1.0_513) on an unknown dataset.
|
17 |
It achieves the following results on the evaluation set:
|
18 |
+
- Loss: 1.1442
|
19 |
+
- Mean Iou: 0.1706
|
20 |
+
- Mean Accuracy: 0.2476
|
21 |
+
- Overall Accuracy: 0.6920
|
22 |
+
- Per Category Iou: [0.705664723495685, 0.0, 0.2945498698407734, 0.15866935715587488, 0.24342079786953616, 0.11915867259300646, 0.0, 0.5229415532605887, 0.036924608676334424, nan, 0.0, 0.025463760124691207, 0.11154955129652562, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan]
|
23 |
+
- Per Category Accuracy: [0.8930569085478202, 0.0, 0.7296482164731961, 0.2190295196554057, 0.35630974275062677, 0.16804377674049947, 0.0, 0.6688736616254668, 0.03693401153549208, nan, 0.0, 0.025467207386923568, 0.12141354618920469, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan]
|
24 |
|
25 |
## Model description
|
26 |
|
|
|
40 |
|
41 |
The following hyperparameters were used during training:
|
42 |
- learning_rate: 6e-05
|
43 |
+
- train_batch_size: 8
|
44 |
+
- eval_batch_size: 8
|
45 |
- seed: 42
|
46 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
47 |
- lr_scheduler_type: linear
|
|
|
49 |
|
50 |
### Training results
|
51 |
|
52 |
+
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Per Category Iou | Per Category Accuracy |
|
53 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|
|
54 |
+
| 1.0965 | 3.12 | 400 | 1.1442 | 0.1706 | 0.2476 | 0.6920 | [0.705664723495685, 0.0, 0.2945498698407734, 0.15866935715587488, 0.24342079786953616, 0.11915867259300646, 0.0, 0.5229415532605887, 0.036924608676334424, nan, 0.0, 0.025463760124691207, 0.11154955129652562, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | [0.8930569085478202, 0.0, 0.7296482164731961, 0.2190295196554057, 0.35630974275062677, 0.16804377674049947, 0.0, 0.6688736616254668, 0.03693401153549208, nan, 0.0, 0.025467207386923568, 0.12141354618920469, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] |
|
|
|
|
|
|
|
|
|
55 |
|
56 |
|
57 |
### Framework versions
|
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 10353021
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6f65fff2a7db73b01527a6bfc77541b7754cfd9f5d9f722f97b0c91733c3a83e
|
3 |
size 10353021
|