gabruarya commited on
Commit
e3257ed
1 Parent(s): 8dadbc4

Upload PPO LunarLander-v2 trained agent

Browse files
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
- value: 294.70 +/- 21.05
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: 312.49 +/- 8.01
20
  name: mean_reward
21
  verified: false
22
  ---
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f9aafdc0ca0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9aafdc0d30>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9aafdc0dc0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9aafdc0e50>", "_build": "<function ActorCriticPolicy._build at 0x7f9aafdc0ee0>", "forward": "<function ActorCriticPolicy.forward at 0x7f9aafdc0f70>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f9aafdc1000>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9aafdc1090>", "_predict": "<function ActorCriticPolicy._predict at 0x7f9aafdc1120>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9aafdc11b0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9aafdc1240>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9aafdc12d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f9ab02886c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 5013504, "_total_timesteps": 5000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1699386842347995288, "learning_rate": 0.0, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJo0Oz012Q8/BuWUvVtiHr/7T9Q9nvuTvQAAAAAAAAAAc+7tPbfyuD7i9dy+a/HkvtEqLr7a6729AAAAAAAAAABmBkE8hbHSu+Gyozy26b88KawKvX6vuDsAAIA/AACAP+ZNwr327De6XvRsuhXPATI2gp86iGgEtAAAAAAAAIA/ALm8vNQdk7z58Ce+8WX8O2fM/D0y2SW6AACAPwAAgD9mBic8jz5luo7/q7hN7q2zBcWTORYfyjcAAIA/AACAP7NaRD26Jbw/2vvGPhEU2D0K2CQ9wxN9PgAAAAAAAAAAM7VuPe1dCD/DvIC+nuMRv5Gxhz1saDW+AAAAAAAAAABm35e84SS0uu1uXzYa5UIxQSf8OYRBgrUAAIA/AACAPzORpj6w4zw/li1KvvZxHb9LXN0+SmCEvgAAAAAAAAAAZq7yO5wCP7y2A4y+Un0Dvv8GQD2rvFc/AACAPwAAgD+ad8q84SC1ugFerbYp55GxrUT3OBapxTUAAIA/AACAP2YYqb1784K8Pfw9Pts/lb0WaiO98Nb8vgAAgD8AAIA/5ph9vR3/Hz8UlJ27ItYmv42I872uMAY9AAAAAAAAAADNqs087HnZuff6oTO7meeusu7TuuBEyLMAAIA/AACAP5qp2bpD3Re8piSIvPPVvDzeX4o9WPSavQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0027007999999999477, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4wsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHIRtlqagEmMAWyUS6+MAXSUR0CxfM8twrDqdX2UKGgGR0Bzb3tE5QxfaAdL1GgIR0CxfNL7TDwZdX2UKGgGR0BzhbtOVPepaAdLumgIR0CxfNioXKr8dX2UKGgGR0BwXwnfEXLvaAdLyWgIR0CxfN6ouPFOdX2UKGgGR0ByH5KpT/ACaAdL02gIR0CxfQpqEeySdX2UKGgGR0BwohzeXRgJaAdLzGgIR0CxfRsCkoF3dX2UKGgGR0Bwv55LRKHxaAdLymgIR0CxfT9at9x7dX2UKGgGR0BRj0h3aBZqaAdLeWgIR0CxfVaa1Cw9dX2UKGgGR0ByZ3dqL0jDaAdLsGgIR0CxfVZMxoIwdX2UKGgGR0Bya8RujynUaAdLu2gIR0CxfVmig00ndX2UKGgGR0BxZ8CcPOIJaAdLyGgIR0CxfV2vbGm2dX2UKGgGR0Bx9gZQ53kgaAdLuWgIR0CxfWblvIfbdX2UKGgGR0B0B72RJVbSaAdLt2gIR0CxfXkbPyCndX2UKGgGR0BxNqZa3ZwoaAdLsGgIR0CxfZaKUFB6dX2UKGgGR0BxHBOj7ALzaAdLs2gIR0CxfZhOgxrSdX2UKGgGR0BwchYISlFdaAdLz2gIR0CxfabwKBuodX2UKGgGR0Bv4o0CRwIdaAdLvmgIR0CxfaxIjGDMdX2UKGgGR0BzogKYzBRAaAdLvGgIR0Cxfa62SdOJdX2UKGgGR0Bxb/O3UhFFaAdLu2gIR0CxfbPfoA4odX2UKGgGR0Bzm8APuognaAdL4mgIR0CxfebfpD/mdX2UKGgGR0B0X5nf2saLaAdL42gIR0CxhFwqiGnGdX2UKGgGR0Bw/pn7HhjwaAdL2GgIR0CxhF3Kr7wbdX2UKGgGR0ByiXkBCD28aAdLz2gIR0CxhHj59E1EdX2UKGgGR0B0bNkiD/VBaAdLzmgIR0CxhI7W/ag3dX2UKGgGR0Bxzo9C/oJRaAdL02gIR0CxhJRISUTtdX2UKGgGR0Bx25QoCuEFaAdLw2gIR0CxhJQjQiRodX2UKGgGR0BzTCJcgQpXaAdL1GgIR0CxhJjxgAp8dX2UKGgGR0BwLzHGS6lMaAdLoGgIR0CxhKn2ZiNLdX2UKGgGR0BxmjeJpFkQaAdLxmgIR0CxhKmRRuTBdX2UKGgGR0Bx+Zq20AtGaAdL8WgIR0CxhMAy6+WXdX2UKGgGR0Bzoyce8wpOaAdLwWgIR0CxhMSpFTegdX2UKGgGR0BxomYYzi0faAdL1GgIR0CxhN2G7BfsdX2UKGgGR0Byd34ZdfLLaAdLxGgIR0CxhOGh7E5ydX2UKGgGR0Bzsog2ZRbbaAdL0GgIR0CxhOvKyOaOdX2UKGgGR0BxuDItDlYEaAdLzmgIR0CxhSpy6tkndX2UKGgGR0ByGKBoVVPvaAdLsGgIR0CxhTZrLyMDdX2UKGgGR0BvQCTINmUXaAdLvmgIR0CxhUd3KSxJdX2UKGgGR0ByVOIZZSvUaAdLx2gIR0CxhW+45Lh8dX2UKGgGR0Bw8Hio86mwaAdLumgIR0CxhXrqptJndX2UKGgGR0Bwlu34Kx9oaAdLvmgIR0CxhYU9t/FzdX2UKGgGR0BycVc5bQkYaAdLzWgIR0CxhZVWfbsXdX2UKGgGR0BxcBnOB19waAdLpGgIR0CxhZVvddmhdX2UKGgGR0BwypHFxXGPaAdLumgIR0CxhayCjDbbdX2UKGgGR0B0Q5ZU1hsqaAdLzWgIR0CxhayKNyYHdX2UKGgGR0Bt7lLJ0W/KaAdNaQFoCEdAsYW2jnFHa3V9lChoBkdAc8n3XZoPCmgHS+loCEdAsYXN8BuGbnV9lChoBkdAccUcIqsls2gHS8RoCEdAsYXQ1wYLs3V9lChoBkdAc9kuVopQUGgHTREBaAhHQLGF4BKcurZ1fZQoaAZHQHN1MINVinZoB0vWaAhHQLGF6pgkTpR1fZQoaAZHQHMA9eIEbHZoB0veaAhHQLGF/TVDrqt1fZQoaAZHQHKi2PDHfdhoB0u4aAhHQLGGFR1X/5t1fZQoaAZHQHNHjG5tm+VoB0vXaAhHQLGGLqm0mdB1fZQoaAZHQHGtOOfdyktoB0uoaAhHQLGGOxYaHbh1fZQoaAZHQG+ADn3cpLFoB0vWaAhHQLGGSR1oxpN1fZQoaAZHQHInKsMiKSBoB0uwaAhHQLGGY/NZ/1B1fZQoaAZHQHLnQHmig01oB0vHaAhHQLGGaxjriVB1fZQoaAZHQHKiCzLOiWVoB0vJaAhHQLGGduWKMvR1fZQoaAZHQHE/kpEx7AtoB0vAaAhHQLGGeKgIyCZ1fZQoaAZHQHJvG8Empl1oB0uxaAhHQLGGfBDohZB1fZQoaAZHQHNwX+MqBmRoB0vJaAhHQLGGmCoS+QF1fZQoaAZHQHB6y5iExqRoB0u0aAhHQLGGoyYXwb51fZQoaAZHQHG/fQ0GeMBoB0vOaAhHQLGGqxu89Oh1fZQoaAZHQHDwibhFVktoB0vFaAhHQLGGvD+irT91fZQoaAZHQHNYUp/gBLhoB0vFaAhHQLGGzkep4r11fZQoaAZHQHKn+3MINVloB0vSaAhHQLGG/X7Lt/p1fZQoaAZHQHHt3uuzQeFoB0vlaAhHQLGG/xXXAdp1fZQoaAZHQHPSkNFz+3poB0vSaAhHQLGHGn0TURZ1fZQoaAZHQHO9i0Sh8IBoB0vFaAhHQLGHIr56+nJ1fZQoaAZHQHDW05hjOLRoB0u9aAhHQLGHNeyzHCJ1fZQoaAZHQHD80daMaS9oB0vAaAhHQLGHVByCFsZ1fZQoaAZHQHGpkqpcX3xoB0u3aAhHQLGHWbqhUR51fZQoaAZHQHMzH6Mzdk9oB0vGaAhHQLGHYmaH9FZ1fZQoaAZHQG+zWkSElE9oB0vYaAhHQLGHiy5qdpZ1fZQoaAZHQHJp45T6zmhoB0vBaAhHQLGHjFqzqr11fZQoaAZHQHNOZEpiI+JoB00RAWgIR0Cxh48TBZZCdX2UKGgGR0BzU4ISlFc6aAdL3WgIR0Cxh42C/XXidX2UKGgGR0BxgxXcQAdXaAdLtmgIR0Cxh4/6KtPpdX2UKGgGR0BwzuHFglWwaAdLwWgIR0Cxh6tLteD4dX2UKGgGR0ByLAsqaw2VaAdLwGgIR0Cxh7vZ/Tb4dX2UKGgGR0BxrPTPSlWPaAdL+GgIR0Cxh9W9pRGddX2UKGgGR0ByK9/WlMyraAdLvGgIR0Cxh+O3+dbxdX2UKGgGR0ByQigUUO/daAdLvGgIR0CxiAfUjLSvdX2UKGgGR0Bx7C8IzFdcaAdLx2gIR0CxiAuRDCxedX2UKGgGR0B0GsB/7SApaAdL6WgIR0CxiBagqVhTdX2UKGgGR0BxgHtmcvugaAdLzWgIR0CxiEzVUdaMdX2UKGgGR0Bw6pYNiH6/aAdLxWgIR0CxiE7+1jRVdX2UKGgGR0BzFkk5ZKWcaAdL6WgIR0CxiFFocrAhdX2UKGgGR0BxGP029+PSaAdLzWgIR0CxiFa20AtGdX2UKGgGR0ByZSW2PT5PaAdLqmgIR0CxiFp5Z8rqdX2UKGgGR0BuP+0E5hjOaAdLu2gIR0CxiGz0cwQEdX2UKGgGR0ByzfDHfdhzaAdLxmgIR0CxiH+RLbpNdX2UKGgGR0B0QxFDv3JxaAdL1WgIR0CxiJOBxxT9dX2UKGgGR0BzXBhttQ9BaAdLxWgIR0CxiJ4u5BkadX2UKGgGR0BznZZzPrv9aAdL52gIR0CxiKjDKoycdX2UKGgGR0Bzdit5le4TaAdLxGgIR0CxiK+IRAbAdX2UKGgGR0ByRrO4XoC/aAdLpGgIR0CxiNc3dbgTdX2UKGgGR0BzXtoUSIxhaAdL1WgIR0CxiNnL3bmEdX2UKGgGR0BxFOfPHDJmaAdLumgIR0CxiOwDFId3dX2UKGgGR0ByGS/M4cWCaAdL3mgIR0CxiPKQ3gk1dX2UKGgGR0BzmL9YOlO5aAdL4WgIR0CxiSfG2kSFdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1472, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVrQEAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUtDQwRkAVMAlE5HAAAAAAAAAACGlCmMAV+UhZSMIy90bXAvaXB5a2VybmVsXzI4MzYxOC8zMjY2MTU5MzYyLnB5lIwIPGxhbWJkYT6USw1DAgQAlCkpdJRSlH2UKIwLX19wYWNrYWdlX1+UTowIX19uYW1lX1+UjAhfX21haW5fX5R1Tk5OdJRSlGgAjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoFn2UfZQoaBNoDYwMX19xdWFsbmFtZV9flGgNjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgUjAdfX2RvY19flE6MC19fY2xvc3VyZV9flE6MF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV/QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVygIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMWi9ob21lL2FyeWFuL0Rlc2t0b3AvUkwvdmVudi9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4RDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMWi9ob21lL2FyeWFuL0Rlc2t0b3AvUkwvdmVudi9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlGgAjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHAAAAAAAAAACFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "system_info": {"OS": "Linux-5.15.0-88-generic-x86_64-with-glibc2.35 # 98-Ubuntu SMP Mon Oct 2 15:18:56 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu121", "GPU Enabled": "True", "Numpy": "1.26.1", "Cloudpickle": "3.0.0", "Gymnasium": "0.28.1"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7ff899d749d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff899d74a60>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff899d74af0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff899d74b80>", "_build": "<function ActorCriticPolicy._build at 0x7ff899d74c10>", "forward": "<function ActorCriticPolicy.forward at 0x7ff899d74ca0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7ff899d74d30>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff899d74dc0>", "_predict": "<function ActorCriticPolicy._predict at 0x7ff899d74e50>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff899d74ee0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff899d74f70>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff899d75000>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7ff899d8a500>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 20054016, "_total_timesteps": 20000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1699565508320164653, "learning_rate": 0.0, "tensorboard_log": null, "_last_obs": null, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVswAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiS0CFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0027007999999999477, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHHJV8G9pRKMAWyUS6mMAXSUR0DbqhSsq8UVdX2UKGgGR0BxxYnKGL1maAdLqGgIR0Dbqhg8/2TQdX2UKGgGR0ByI5g3Lmp3aAdLx2gIR0Dbqh4ZWJaadX2UKGgGR0Bwbtu4wyqNaAdLp2gIR0DbqiHPnjhldX2UKGgGR0BzHKtGNJe3aAdLuGgIR0DbqjephnandX2UKGgGR0Bza4+mm+CcaAdLsGgIR0DbqjsqBmPHdX2UKGgGR0BzT2gK4QSSaAdLwGgIR0Dbqj1Mvh60dX2UKGgGR0BxUa7GvOhTaAdLrGgIR0Dbqkc5zYEodX2UKGgGR0BxxmY+jdpJaAdLo2gIR0DbqlpknTiLdX2UKGgGR0Bw8XILgGbDaAdLnmgIR0DbqloURFqjdX2UKGgGR0ByzsmWt2cKaAdLt2gIR0Dbqlj7tRekdX2UKGgGR0BzAS+h4+r3aAdLv2gIR0Dbqmk9TxXodX2UKGgGR0BxDvHbRF7VaAdLo2gIR0DbqmxIsiB5dX2UKGgGR0BzVrO7g88taAdLq2gIR0DbqmusOoYOdX2UKGgGR0BwqrqdH2AYaAdLmmgIR0DbqnpRm9QGdX2UKGgGR0BziFYcNpdsaAdLr2gIR0DbqorTXrdFdX2UKGgGR0Bz3i1G9YfXaAdLv2gIR0DbqoohfShKdX2UKGgGR0BwfKksSTQmaAdLp2gIR0DbqpDkXDWLdX2UKGgGR0Bw+1RIjGDMaAdLoGgIR0DbqpnRCx/vdX2UKGgGR0ByD2/sVtXQaAdLr2gIR0DbqpmcriEQdX2UKGgGR0BwFBQQ+UyIaAdLj2gIR0DbqpuW+oLodX2UKGgGR0BxzM0Mw1ziaAdLs2gIR0Dbqp8Z88cNdX2UKGgGR0BzS71TR6WxaAdLrWgIR0Dbqp8GgSOBdX2UKGgGR0BzcUr5IpYtaAdLtWgIR0Dbqp8PoV2zdX2UKGgGR0BwClLYf4h2aAdLmWgIR0Dbqp7TAnD0dX2UKGgGR0ByUzvZyuIRaAdLtWgIR0DbqqgeFL39dX2UKGgGR0BxaaqEOAiFaAdLnGgIR0DbqqxZ3cHodX2UKGgGR0Bz8jZK3/gjaAdLr2gIR0DbqrHNY8uBdX2UKGgGR0By4f/5tWMkaAdLtmgIR0DbqsWRQrMDdX2UKGgGR0BvO+BczImxaAdNEQFoCEdA26rHqsEJSnV9lChoBkdAc4su0TlDGGgHS8NoCEdA26rHFFDv3XV9lChoBkdAcw0zreIl+mgHS8RoCEdA26rGWiDdxnV9lChoBkdAc/ae3QUpNWgHS7poCEdA26rMszVMEnV9lChoBkdAc6r+zdDYy2gHS7JoCEdA26rTtNzr/3V9lChoBkdAcTSjebd8A2gHS45oCEdA26red0JWvXV9lChoBkdAc6WtwrDqGGgHS8BoCEdA26rc1XNkfHV9lChoBkdAckEfw7T2FmgHS5RoCEdA26rk6Vt4zXV9lChoBkdAcwx+yZ8a42gHS7hoCEdA26rvwlSjxnV9lChoBkdAdBtfJV81GmgHS71oCEdA26r3FiKBNHV9lChoBkdAceSalk6LfmgHS4doCEdA26r8wgkkbHV9lChoBkdAcFVAdXDFZWgHS5JoCEdA26sD3fQ8fXV9lChoBkdAc9pcM3IdVGgHS75oCEdA26sPCZ4Oc3V9lChoBkdAcFpfnfVI7WgHS5NoCEdA26sRTmW+oXV9lChoBkdAc6P6Q/5ckmgHS65oCEdA26sTst03fnV9lChoBkdAc08KhcqvvGgHS5hoCEdA26sXs41gpnV9lChoBkdAcSEOkLx7RmgHS5doCEdA26sXrilzl3V9lChoBkdAdFMucc2itmgHS6toCEdA26sY+PikwnV9lChoBkdAcqIP0qYqomgHS5loCEdA26shqDK5kXV9lChoBkdAcw1ygf2bomgHS6BoCEdA26sktGus93V9lChoBkdAcIMJAdGRWGgHS6loCEdA26snhEjPfXV9lChoBkdAcftZDzAerGgHS4xoCEdA26s7p48lonV9lChoBkdAcS9NO/L1VmgHS6RoCEdA26tPYxL0z3V9lChoBkdAcEwZiNKh+WgHS6hoCEdA26tRxW1c+3V9lChoBkdAcokYqXnhbWgHS5VoCEdA26tUGY8dP3V9lChoBkdAb4pHn2ZiNWgHS6ZoCEdA26tV4oZydXV9lChoBkdAcz0GSZBsymgHS6FoCEdA26toCXhOxnV9lChoBkdAcYw6AvtdA2gHS6xoCEdA26ttTz/ZNHV9lChoBkdAdDn//echDGgHS8hoCEdA26txq+rU9nV9lChoBkdAcDMuVopQUGgHS6xoCEdA26t4d5prUXV9lChoBkdAc8imseXAumgHS6NoCEdA26uCh2GIsXV9lChoBkdAcfXEBbOeKGgHS45oCEdA26uVZOzpo3V9lChoBkdAchDHzH0btWgHS6hoCEdA26uqTTvy9XV9lChoBkdAcmV1Vo6CDmgHS5RoCEdA26vG+PBBRnV9lChoBkdAcf4IO6NEPWgHS4poCEdA26vKpMHryHV9lChoBkdAcWRi2DxsmGgHS6RoCEdA26vZwIMSb3V9lChoBkdAcZtZkTYdyWgHS6RoCEdA26vfYzSCv3V9lChoBkdAc3E5oXbdrWgHS6ZoCEdA26vpfOUt7XV9lChoBkdAcZ0dTo+wDGgHS6xoCEdA26vsmw7kn3V9lChoBkdAcc+qmTC+DmgHS5BoCEdA26vvSVnmJXV9lChoBkdAcl0O+7Dl5mgHS8NoCEdA26vuw22oenV9lChoBkdAcxY45cTrV2gHS6JoCEdA26v3eTFERnV9lChoBkdAcxdJkGzKLmgHS9RoCEdA26v96T4cm3V9lChoBkdAcimWLP2PDGgHS4xoCEdA26wHP2f03HV9lChoBkdAcddATIvJzWgHS4doCEdA26wGnkkrw3V9lChoBkdAcxDQXAM2FWgHS5toCEdA26wOZntfHHV9lChoBkdAcboD0163RWgHS41oCEdA26wSlYEGJXV9lChoBkdAc7XrdWQwK2gHS7poCEdA26w7q1PWQXV9lChoBkdAQyv9LpRoAWgHS1xoCEdA26w+rs0HhXV9lChoBkdAcLBFuNxVAGgHS6NoCEdA26xEvgWJrXV9lChoBkdAcZoXEqDsdGgHS59oCEdA26xHxQBPsXV9lChoBkdAczewCbMHKWgHS7ZoCEdA26xN2itaIXV9lChoBkdAcqEI/qxC6mgHS5BoCEdA26xMtaY/mnV9lChoBkdAdC18La24NWgHS7JoCEdA26xQcd5prXV9lChoBkdAcxodT5wfhmgHS5VoCEdA26xcdat9yHV9lChoBkdAc/XAprk8zWgHS7BoCEdA26xbfAsTWXV9lChoBkdAckjrGR3eN2gHS6xoCEdA26xelfqoqHV9lChoBkdAc4TpoK2KEWgHS7xoCEdA26xeRQ79ynV9lChoBkdAc6iwnYxtYWgHS8VoCEdA26xngw482nV9lChoBkdAc0gUqx1PnGgHS5JoCEdA26xtS1E3KnV9lChoBkdAcTFFMqSX+mgHS6toCEdA26x4ZezD43V9lChoBkdAcoVK3d9DyGgHS39oCEdA26yDJ+2E03V9lChoBkdAceNALApKBmgHS6VoCEdA26yGLlV94XV9lChoBkdAcQIm8M/hVGgHS7VoCEdA26yKfxMFlnV9lChoBkdAcR/tqpLmIWgHS7VoCEdA26yKYyfthXV9lChoBkdAcxFqkM1CPmgHS69oCEdA26yNY6GQCHV9lChoBkdAc+1gWJrLyWgHS7VoCEdA26yXa1kUbnV9lChoBkdAcPebYsd1dWgHS6hoCEdA26yc7eVLSXV9lChoBkdAcVLK508vEmgHS6NoCEdA26yh24uscXV9lChoBkdAcXdMaCL/CWgHS55oCEdA26yoKZDzAnV9lChoBkdAct4QAdXDFmgHS7JoCEdA26ypvfj0c3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1224, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV/QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 64, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVrAEAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUtDQwRkAVMAlE5HAAAAAAAAAACGlCmMAV+UhZSMIi90bXAvaXB5a2VybmVsXzU2NTQxNS80MjQ0NTYzNjgucHmUjAg8bGFtYmRhPpRLDUMCBACUKSl0lFKUfZQojAtfX3BhY2thZ2VfX5ROjAhfX25hbWVfX5SMCF9fbWFpbl9flHVOTk50lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgWfZR9lChoE2gNjAxfX3F1YWxuYW1lX1+UaA2MD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBSMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UTowXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVygIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMWi9ob21lL2FyeWFuL0Rlc2t0b3AvUkwvdmVudi9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4RDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMWi9ob21lL2FyeWFuL0Rlc2t0b3AvUkwvdmVudi9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlGgAjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHAAAAAAAAAACFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "system_info": {"OS": "Linux-5.15.0-88-generic-x86_64-with-glibc2.35 # 98-Ubuntu SMP Mon Oct 2 15:18:56 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu121", "GPU Enabled": "True", "Numpy": "1.26.1", "Cloudpickle": "3.0.0", "Gymnasium": "0.28.1"}}
ppo-LunarLander-v2.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:dc31b973dac2b653aa1a9f374712e73eac9ceea75becc4849dd82639f8b77c05
3
- size 147743
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a3be2a88bdbc38d9d71e4dd47395fde240a9e7ba4b17e1311d24ba3d34946120
3
+ size 146878
ppo-LunarLander-v2/data CHANGED
@@ -4,38 +4,35 @@
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function ActorCriticPolicy.__init__ at 0x7f9aafdc0ca0>",
8
- "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9aafdc0d30>",
9
- "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9aafdc0dc0>",
10
- "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9aafdc0e50>",
11
- "_build": "<function ActorCriticPolicy._build at 0x7f9aafdc0ee0>",
12
- "forward": "<function ActorCriticPolicy.forward at 0x7f9aafdc0f70>",
13
- "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f9aafdc1000>",
14
- "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9aafdc1090>",
15
- "_predict": "<function ActorCriticPolicy._predict at 0x7f9aafdc1120>",
16
- "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9aafdc11b0>",
17
- "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9aafdc1240>",
18
- "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9aafdc12d0>",
19
  "__abstractmethods__": "frozenset()",
20
- "_abc_impl": "<_abc._abc_data object at 0x7f9ab02886c0>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {},
24
- "num_timesteps": 5013504,
25
- "_total_timesteps": 5000000,
26
  "_num_timesteps_at_start": 0,
27
  "seed": null,
28
  "action_noise": null,
29
- "start_time": 1699386842347995288,
30
  "learning_rate": 0.0,
31
  "tensorboard_log": null,
32
- "_last_obs": {
33
- ":type:": "<class 'numpy.ndarray'>",
34
- ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJo0Oz012Q8/BuWUvVtiHr/7T9Q9nvuTvQAAAAAAAAAAc+7tPbfyuD7i9dy+a/HkvtEqLr7a6729AAAAAAAAAABmBkE8hbHSu+Gyozy26b88KawKvX6vuDsAAIA/AACAP+ZNwr327De6XvRsuhXPATI2gp86iGgEtAAAAAAAAIA/ALm8vNQdk7z58Ce+8WX8O2fM/D0y2SW6AACAPwAAgD9mBic8jz5luo7/q7hN7q2zBcWTORYfyjcAAIA/AACAP7NaRD26Jbw/2vvGPhEU2D0K2CQ9wxN9PgAAAAAAAAAAM7VuPe1dCD/DvIC+nuMRv5Gxhz1saDW+AAAAAAAAAABm35e84SS0uu1uXzYa5UIxQSf8OYRBgrUAAIA/AACAPzORpj6w4zw/li1KvvZxHb9LXN0+SmCEvgAAAAAAAAAAZq7yO5wCP7y2A4y+Un0Dvv8GQD2rvFc/AACAPwAAgD+ad8q84SC1ugFerbYp55GxrUT3OBapxTUAAIA/AACAP2YYqb1784K8Pfw9Pts/lb0WaiO98Nb8vgAAgD8AAIA/5ph9vR3/Hz8UlJ27ItYmv42I872uMAY9AAAAAAAAAADNqs087HnZuff6oTO7meeusu7TuuBEyLMAAIA/AACAP5qp2bpD3Re8piSIvPPVvDzeX4o9WPSavQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
- },
36
  "_last_episode_starts": {
37
  ":type:": "<class 'numpy.ndarray'>",
38
- ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
  },
40
  "_last_original_obs": null,
41
  "_episode_num": 0,
@@ -45,28 +42,13 @@
45
  "_stats_window_size": 100,
46
  "ep_info_buffer": {
47
  ":type:": "<class 'collections.deque'>",
48
- ":serialized:": "gAWV4wsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHIRtlqagEmMAWyUS6+MAXSUR0CxfM8twrDqdX2UKGgGR0Bzb3tE5QxfaAdL1GgIR0CxfNL7TDwZdX2UKGgGR0BzhbtOVPepaAdLumgIR0CxfNioXKr8dX2UKGgGR0BwXwnfEXLvaAdLyWgIR0CxfN6ouPFOdX2UKGgGR0ByH5KpT/ACaAdL02gIR0CxfQpqEeySdX2UKGgGR0BwohzeXRgJaAdLzGgIR0CxfRsCkoF3dX2UKGgGR0Bwv55LRKHxaAdLymgIR0CxfT9at9x7dX2UKGgGR0BRj0h3aBZqaAdLeWgIR0CxfVaa1Cw9dX2UKGgGR0ByZ3dqL0jDaAdLsGgIR0CxfVZMxoIwdX2UKGgGR0Bya8RujynUaAdLu2gIR0CxfVmig00ndX2UKGgGR0BxZ8CcPOIJaAdLyGgIR0CxfV2vbGm2dX2UKGgGR0Bx9gZQ53kgaAdLuWgIR0CxfWblvIfbdX2UKGgGR0B0B72RJVbSaAdLt2gIR0CxfXkbPyCndX2UKGgGR0BxNqZa3ZwoaAdLsGgIR0CxfZaKUFB6dX2UKGgGR0BxHBOj7ALzaAdLs2gIR0CxfZhOgxrSdX2UKGgGR0BwchYISlFdaAdLz2gIR0CxfabwKBuodX2UKGgGR0Bv4o0CRwIdaAdLvmgIR0CxfaxIjGDMdX2UKGgGR0BzogKYzBRAaAdLvGgIR0Cxfa62SdOJdX2UKGgGR0Bxb/O3UhFFaAdLu2gIR0CxfbPfoA4odX2UKGgGR0Bzm8APuognaAdL4mgIR0CxfebfpD/mdX2UKGgGR0B0X5nf2saLaAdL42gIR0CxhFwqiGnGdX2UKGgGR0Bw/pn7HhjwaAdL2GgIR0CxhF3Kr7wbdX2UKGgGR0ByiXkBCD28aAdLz2gIR0CxhHj59E1EdX2UKGgGR0B0bNkiD/VBaAdLzmgIR0CxhI7W/ag3dX2UKGgGR0Bxzo9C/oJRaAdL02gIR0CxhJRISUTtdX2UKGgGR0Bx25QoCuEFaAdLw2gIR0CxhJQjQiRodX2UKGgGR0BzTCJcgQpXaAdL1GgIR0CxhJjxgAp8dX2UKGgGR0BwLzHGS6lMaAdLoGgIR0CxhKn2ZiNLdX2UKGgGR0BxmjeJpFkQaAdLxmgIR0CxhKmRRuTBdX2UKGgGR0Bx+Zq20AtGaAdL8WgIR0CxhMAy6+WXdX2UKGgGR0Bzoyce8wpOaAdLwWgIR0CxhMSpFTegdX2UKGgGR0BxomYYzi0faAdL1GgIR0CxhN2G7BfsdX2UKGgGR0Byd34ZdfLLaAdLxGgIR0CxhOGh7E5ydX2UKGgGR0Bzsog2ZRbbaAdL0GgIR0CxhOvKyOaOdX2UKGgGR0BxuDItDlYEaAdLzmgIR0CxhSpy6tkndX2UKGgGR0ByGKBoVVPvaAdLsGgIR0CxhTZrLyMDdX2UKGgGR0BvQCTINmUXaAdLvmgIR0CxhUd3KSxJdX2UKGgGR0ByVOIZZSvUaAdLx2gIR0CxhW+45Lh8dX2UKGgGR0Bw8Hio86mwaAdLumgIR0CxhXrqptJndX2UKGgGR0Bwlu34Kx9oaAdLvmgIR0CxhYU9t/FzdX2UKGgGR0BycVc5bQkYaAdLzWgIR0CxhZVWfbsXdX2UKGgGR0BxcBnOB19waAdLpGgIR0CxhZVvddmhdX2UKGgGR0BwypHFxXGPaAdLumgIR0CxhayCjDbbdX2UKGgGR0B0Q5ZU1hsqaAdLzWgIR0CxhayKNyYHdX2UKGgGR0Bt7lLJ0W/KaAdNaQFoCEdAsYW2jnFHa3V9lChoBkdAc8n3XZoPCmgHS+loCEdAsYXN8BuGbnV9lChoBkdAccUcIqsls2gHS8RoCEdAsYXQ1wYLs3V9lChoBkdAc9kuVopQUGgHTREBaAhHQLGF4BKcurZ1fZQoaAZHQHN1MINVinZoB0vWaAhHQLGF6pgkTpR1fZQoaAZHQHMA9eIEbHZoB0veaAhHQLGF/TVDrqt1fZQoaAZHQHKi2PDHfdhoB0u4aAhHQLGGFR1X/5t1fZQoaAZHQHNHjG5tm+VoB0vXaAhHQLGGLqm0mdB1fZQoaAZHQHGtOOfdyktoB0uoaAhHQLGGOxYaHbh1fZQoaAZHQG+ADn3cpLFoB0vWaAhHQLGGSR1oxpN1fZQoaAZHQHInKsMiKSBoB0uwaAhHQLGGY/NZ/1B1fZQoaAZHQHLnQHmig01oB0vHaAhHQLGGaxjriVB1fZQoaAZHQHKiCzLOiWVoB0vJaAhHQLGGduWKMvR1fZQoaAZHQHE/kpEx7AtoB0vAaAhHQLGGeKgIyCZ1fZQoaAZHQHJvG8Empl1oB0uxaAhHQLGGfBDohZB1fZQoaAZHQHNwX+MqBmRoB0vJaAhHQLGGmCoS+QF1fZQoaAZHQHB6y5iExqRoB0u0aAhHQLGGoyYXwb51fZQoaAZHQHG/fQ0GeMBoB0vOaAhHQLGGqxu89Oh1fZQoaAZHQHDwibhFVktoB0vFaAhHQLGGvD+irT91fZQoaAZHQHNYUp/gBLhoB0vFaAhHQLGGzkep4r11fZQoaAZHQHKn+3MINVloB0vSaAhHQLGG/X7Lt/p1fZQoaAZHQHHt3uuzQeFoB0vlaAhHQLGG/xXXAdp1fZQoaAZHQHPSkNFz+3poB0vSaAhHQLGHGn0TURZ1fZQoaAZHQHO9i0Sh8IBoB0vFaAhHQLGHIr56+nJ1fZQoaAZHQHDW05hjOLRoB0u9aAhHQLGHNeyzHCJ1fZQoaAZHQHD80daMaS9oB0vAaAhHQLGHVByCFsZ1fZQoaAZHQHGpkqpcX3xoB0u3aAhHQLGHWbqhUR51fZQoaAZHQHMzH6Mzdk9oB0vGaAhHQLGHYmaH9FZ1fZQoaAZHQG+zWkSElE9oB0vYaAhHQLGHiy5qdpZ1fZQoaAZHQHJp45T6zmhoB0vBaAhHQLGHjFqzqr11fZQoaAZHQHNOZEpiI+JoB00RAWgIR0Cxh48TBZZCdX2UKGgGR0BzU4ISlFc6aAdL3WgIR0Cxh42C/XXidX2UKGgGR0BxgxXcQAdXaAdLtmgIR0Cxh4/6KtPpdX2UKGgGR0BwzuHFglWwaAdLwWgIR0Cxh6tLteD4dX2UKGgGR0ByLAsqaw2VaAdLwGgIR0Cxh7vZ/Tb4dX2UKGgGR0BxrPTPSlWPaAdL+GgIR0Cxh9W9pRGddX2UKGgGR0ByK9/WlMyraAdLvGgIR0Cxh+O3+dbxdX2UKGgGR0ByQigUUO/daAdLvGgIR0CxiAfUjLSvdX2UKGgGR0Bx7C8IzFdcaAdLx2gIR0CxiAuRDCxedX2UKGgGR0B0GsB/7SApaAdL6WgIR0CxiBagqVhTdX2UKGgGR0BxgHtmcvugaAdLzWgIR0CxiEzVUdaMdX2UKGgGR0Bw6pYNiH6/aAdLxWgIR0CxiE7+1jRVdX2UKGgGR0BzFkk5ZKWcaAdL6WgIR0CxiFFocrAhdX2UKGgGR0BxGP029+PSaAdLzWgIR0CxiFa20AtGdX2UKGgGR0ByZSW2PT5PaAdLqmgIR0CxiFp5Z8rqdX2UKGgGR0BuP+0E5hjOaAdLu2gIR0CxiGz0cwQEdX2UKGgGR0ByzfDHfdhzaAdLxmgIR0CxiH+RLbpNdX2UKGgGR0B0QxFDv3JxaAdL1WgIR0CxiJOBxxT9dX2UKGgGR0BzXBhttQ9BaAdLxWgIR0CxiJ4u5BkadX2UKGgGR0BznZZzPrv9aAdL52gIR0CxiKjDKoycdX2UKGgGR0Bzdit5le4TaAdLxGgIR0CxiK+IRAbAdX2UKGgGR0ByRrO4XoC/aAdLpGgIR0CxiNc3dbgTdX2UKGgGR0BzXtoUSIxhaAdL1WgIR0CxiNnL3bmEdX2UKGgGR0BxFOfPHDJmaAdLumgIR0CxiOwDFId3dX2UKGgGR0ByGS/M4cWCaAdL3mgIR0CxiPKQ3gk1dX2UKGgGR0BzmL9YOlO5aAdL4WgIR0CxiSfG2kSFdWUu"
49
  },
50
  "ep_success_buffer": {
51
  ":type:": "<class 'collections.deque'>",
52
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
  },
54
- "_n_updates": 1472,
55
- "n_steps": 1024,
56
- "gamma": 0.999,
57
- "gae_lambda": 0.98,
58
- "ent_coef": 0.01,
59
- "vf_coef": 0.5,
60
- "max_grad_norm": 0.5,
61
- "batch_size": 64,
62
- "n_epochs": 4,
63
- "clip_range": {
64
- ":type:": "<class 'function'>",
65
- ":serialized:": "gAWVrQEAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUtDQwRkAVMAlE5HAAAAAAAAAACGlCmMAV+UhZSMIy90bXAvaXB5a2VybmVsXzI4MzYxOC8zMjY2MTU5MzYyLnB5lIwIPGxhbWJkYT6USw1DAgQAlCkpdJRSlH2UKIwLX19wYWNrYWdlX1+UTowIX19uYW1lX1+UjAhfX21haW5fX5R1Tk5OdJRSlGgAjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoFn2UfZQoaBNoDYwMX19xdWFsbmFtZV9flGgNjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgUjAdfX2RvY19flE6MC19fY2xvc3VyZV9flE6MF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
66
- },
67
- "clip_range_vf": null,
68
- "normalize_advantage": true,
69
- "target_kl": null,
70
  "observation_space": {
71
  ":type:": "<class 'gymnasium.spaces.box.Box'>",
72
  ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
@@ -91,7 +73,22 @@
91
  "dtype": "int64",
92
  "_np_random": null
93
  },
94
- "n_envs": 16,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
95
  "lr_schedule": {
96
  ":type:": "<class 'function'>",
97
  ":serialized:": "gAWVygIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMWi9ob21lL2FyeWFuL0Rlc2t0b3AvUkwvdmVudi9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4RDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMWi9ob21lL2FyeWFuL0Rlc2t0b3AvUkwvdmVudi9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlGgAjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHAAAAAAAAAACFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
 
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7ff899d749d0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff899d74a60>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff899d74af0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff899d74b80>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7ff899d74c10>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7ff899d74ca0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7ff899d74d30>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff899d74dc0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7ff899d74e50>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff899d74ee0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff899d74f70>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff899d75000>",
19
  "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7ff899d8a500>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {},
24
+ "num_timesteps": 20054016,
25
+ "_total_timesteps": 20000000,
26
  "_num_timesteps_at_start": 0,
27
  "seed": null,
28
  "action_noise": null,
29
+ "start_time": 1699565508320164653,
30
  "learning_rate": 0.0,
31
  "tensorboard_log": null,
32
+ "_last_obs": null,
 
 
 
33
  "_last_episode_starts": {
34
  ":type:": "<class 'numpy.ndarray'>",
35
+ ":serialized:": "gAWVswAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiS0CFlIwBQ5R0lFKULg=="
36
  },
37
  "_last_original_obs": null,
38
  "_episode_num": 0,
 
42
  "_stats_window_size": 100,
43
  "ep_info_buffer": {
44
  ":type:": "<class 'collections.deque'>",
45
+ ":serialized:": "gAWV4QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHHJV8G9pRKMAWyUS6mMAXSUR0DbqhSsq8UVdX2UKGgGR0BxxYnKGL1maAdLqGgIR0Dbqhg8/2TQdX2UKGgGR0ByI5g3Lmp3aAdLx2gIR0Dbqh4ZWJaadX2UKGgGR0Bwbtu4wyqNaAdLp2gIR0DbqiHPnjhldX2UKGgGR0BzHKtGNJe3aAdLuGgIR0DbqjephnandX2UKGgGR0Bza4+mm+CcaAdLsGgIR0DbqjsqBmPHdX2UKGgGR0BzT2gK4QSSaAdLwGgIR0Dbqj1Mvh60dX2UKGgGR0BxUa7GvOhTaAdLrGgIR0Dbqkc5zYEodX2UKGgGR0BxxmY+jdpJaAdLo2gIR0DbqlpknTiLdX2UKGgGR0Bw8XILgGbDaAdLnmgIR0DbqloURFqjdX2UKGgGR0ByzsmWt2cKaAdLt2gIR0Dbqlj7tRekdX2UKGgGR0BzAS+h4+r3aAdLv2gIR0Dbqmk9TxXodX2UKGgGR0BxDvHbRF7VaAdLo2gIR0DbqmxIsiB5dX2UKGgGR0BzVrO7g88taAdLq2gIR0DbqmusOoYOdX2UKGgGR0BwqrqdH2AYaAdLmmgIR0DbqnpRm9QGdX2UKGgGR0BziFYcNpdsaAdLr2gIR0DbqorTXrdFdX2UKGgGR0Bz3i1G9YfXaAdLv2gIR0DbqoohfShKdX2UKGgGR0BwfKksSTQmaAdLp2gIR0DbqpDkXDWLdX2UKGgGR0Bw+1RIjGDMaAdLoGgIR0DbqpnRCx/vdX2UKGgGR0ByD2/sVtXQaAdLr2gIR0DbqpmcriEQdX2UKGgGR0BwFBQQ+UyIaAdLj2gIR0DbqpuW+oLodX2UKGgGR0BxzM0Mw1ziaAdLs2gIR0Dbqp8Z88cNdX2UKGgGR0BzS71TR6WxaAdLrWgIR0Dbqp8GgSOBdX2UKGgGR0BzcUr5IpYtaAdLtWgIR0Dbqp8PoV2zdX2UKGgGR0BwClLYf4h2aAdLmWgIR0Dbqp7TAnD0dX2UKGgGR0ByUzvZyuIRaAdLtWgIR0DbqqgeFL39dX2UKGgGR0BxaaqEOAiFaAdLnGgIR0DbqqxZ3cHodX2UKGgGR0Bz8jZK3/gjaAdLr2gIR0DbqrHNY8uBdX2UKGgGR0By4f/5tWMkaAdLtmgIR0DbqsWRQrMDdX2UKGgGR0BvO+BczImxaAdNEQFoCEdA26rHqsEJSnV9lChoBkdAc4su0TlDGGgHS8NoCEdA26rHFFDv3XV9lChoBkdAcw0zreIl+mgHS8RoCEdA26rGWiDdxnV9lChoBkdAc/ae3QUpNWgHS7poCEdA26rMszVMEnV9lChoBkdAc6r+zdDYy2gHS7JoCEdA26rTtNzr/3V9lChoBkdAcTSjebd8A2gHS45oCEdA26red0JWvXV9lChoBkdAc6WtwrDqGGgHS8BoCEdA26rc1XNkfHV9lChoBkdAckEfw7T2FmgHS5RoCEdA26rk6Vt4zXV9lChoBkdAcwx+yZ8a42gHS7hoCEdA26rvwlSjxnV9lChoBkdAdBtfJV81GmgHS71oCEdA26r3FiKBNHV9lChoBkdAceSalk6LfmgHS4doCEdA26r8wgkkbHV9lChoBkdAcFVAdXDFZWgHS5JoCEdA26sD3fQ8fXV9lChoBkdAc9pcM3IdVGgHS75oCEdA26sPCZ4Oc3V9lChoBkdAcFpfnfVI7WgHS5NoCEdA26sRTmW+oXV9lChoBkdAc6P6Q/5ckmgHS65oCEdA26sTst03fnV9lChoBkdAc08KhcqvvGgHS5hoCEdA26sXs41gpnV9lChoBkdAcSEOkLx7RmgHS5doCEdA26sXrilzl3V9lChoBkdAdFMucc2itmgHS6toCEdA26sY+PikwnV9lChoBkdAcqIP0qYqomgHS5loCEdA26shqDK5kXV9lChoBkdAcw1ygf2bomgHS6BoCEdA26sktGus93V9lChoBkdAcIMJAdGRWGgHS6loCEdA26snhEjPfXV9lChoBkdAcftZDzAerGgHS4xoCEdA26s7p48lonV9lChoBkdAcS9NO/L1VmgHS6RoCEdA26tPYxL0z3V9lChoBkdAcEwZiNKh+WgHS6hoCEdA26tRxW1c+3V9lChoBkdAcokYqXnhbWgHS5VoCEdA26tUGY8dP3V9lChoBkdAb4pHn2ZiNWgHS6ZoCEdA26tV4oZydXV9lChoBkdAcz0GSZBsymgHS6FoCEdA26toCXhOxnV9lChoBkdAcYw6AvtdA2gHS6xoCEdA26ttTz/ZNHV9lChoBkdAdDn//echDGgHS8hoCEdA26txq+rU9nV9lChoBkdAcDMuVopQUGgHS6xoCEdA26t4d5prUXV9lChoBkdAc8imseXAumgHS6NoCEdA26uCh2GIsXV9lChoBkdAcfXEBbOeKGgHS45oCEdA26uVZOzpo3V9lChoBkdAchDHzH0btWgHS6hoCEdA26uqTTvy9XV9lChoBkdAcmV1Vo6CDmgHS5RoCEdA26vG+PBBRnV9lChoBkdAcf4IO6NEPWgHS4poCEdA26vKpMHryHV9lChoBkdAcWRi2DxsmGgHS6RoCEdA26vZwIMSb3V9lChoBkdAcZtZkTYdyWgHS6RoCEdA26vfYzSCv3V9lChoBkdAc3E5oXbdrWgHS6ZoCEdA26vpfOUt7XV9lChoBkdAcZ0dTo+wDGgHS6xoCEdA26vsmw7kn3V9lChoBkdAcc+qmTC+DmgHS5BoCEdA26vvSVnmJXV9lChoBkdAcl0O+7Dl5mgHS8NoCEdA26vuw22oenV9lChoBkdAcxY45cTrV2gHS6JoCEdA26v3eTFERnV9lChoBkdAcxdJkGzKLmgHS9RoCEdA26v96T4cm3V9lChoBkdAcimWLP2PDGgHS4xoCEdA26wHP2f03HV9lChoBkdAcddATIvJzWgHS4doCEdA26wGnkkrw3V9lChoBkdAcxDQXAM2FWgHS5toCEdA26wOZntfHHV9lChoBkdAcboD0163RWgHS41oCEdA26wSlYEGJXV9lChoBkdAc7XrdWQwK2gHS7poCEdA26w7q1PWQXV9lChoBkdAQyv9LpRoAWgHS1xoCEdA26w+rs0HhXV9lChoBkdAcLBFuNxVAGgHS6NoCEdA26xEvgWJrXV9lChoBkdAcZoXEqDsdGgHS59oCEdA26xHxQBPsXV9lChoBkdAczewCbMHKWgHS7ZoCEdA26xN2itaIXV9lChoBkdAcqEI/qxC6mgHS5BoCEdA26xMtaY/mnV9lChoBkdAdC18La24NWgHS7JoCEdA26xQcd5prXV9lChoBkdAcxodT5wfhmgHS5VoCEdA26xcdat9yHV9lChoBkdAc/XAprk8zWgHS7BoCEdA26xbfAsTWXV9lChoBkdAckjrGR3eN2gHS6xoCEdA26xelfqoqHV9lChoBkdAc4TpoK2KEWgHS7xoCEdA26xeRQ79ynV9lChoBkdAc6iwnYxtYWgHS8VoCEdA26xngw482nV9lChoBkdAc0gUqx1PnGgHS5JoCEdA26xtS1E3KnV9lChoBkdAcTFFMqSX+mgHS6toCEdA26x4ZezD43V9lChoBkdAcoVK3d9DyGgHS39oCEdA26yDJ+2E03V9lChoBkdAceNALApKBmgHS6VoCEdA26yGLlV94XV9lChoBkdAcQIm8M/hVGgHS7VoCEdA26yKfxMFlnV9lChoBkdAcR/tqpLmIWgHS7VoCEdA26yKYyfthXV9lChoBkdAcxFqkM1CPmgHS69oCEdA26yNY6GQCHV9lChoBkdAc+1gWJrLyWgHS7VoCEdA26yXa1kUbnV9lChoBkdAcPebYsd1dWgHS6hoCEdA26yc7eVLSXV9lChoBkdAcVLK508vEmgHS6NoCEdA26yh24uscXV9lChoBkdAcXdMaCL/CWgHS55oCEdA26yoKZDzAnV9lChoBkdAct4QAdXDFmgHS7JoCEdA26ypvfj0c3VlLg=="
46
  },
47
  "ep_success_buffer": {
48
  ":type:": "<class 'collections.deque'>",
49
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
50
  },
51
+ "_n_updates": 1224,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52
  "observation_space": {
53
  ":type:": "<class 'gymnasium.spaces.box.Box'>",
54
  ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
 
73
  "dtype": "int64",
74
  "_np_random": null
75
  },
76
+ "n_envs": 64,
77
+ "n_steps": 1024,
78
+ "gamma": 0.999,
79
+ "gae_lambda": 0.98,
80
+ "ent_coef": 0.01,
81
+ "vf_coef": 0.5,
82
+ "max_grad_norm": 0.5,
83
+ "batch_size": 64,
84
+ "n_epochs": 4,
85
+ "clip_range": {
86
+ ":type:": "<class 'function'>",
87
+ ":serialized:": "gAWVrAEAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUtDQwRkAVMAlE5HAAAAAAAAAACGlCmMAV+UhZSMIi90bXAvaXB5a2VybmVsXzU2NTQxNS80MjQ0NTYzNjgucHmUjAg8bGFtYmRhPpRLDUMCBACUKSl0lFKUfZQojAtfX3BhY2thZ2VfX5ROjAhfX25hbWVfX5SMCF9fbWFpbl9flHVOTk50lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgWfZR9lChoE2gNjAxfX3F1YWxuYW1lX1+UaA2MD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBSMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UTowXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
88
+ },
89
+ "clip_range_vf": null,
90
+ "normalize_advantage": true,
91
+ "target_kl": null,
92
  "lr_schedule": {
93
  ":type:": "<class 'function'>",
94
  ":serialized:": "gAWVygIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMWi9ob21lL2FyeWFuL0Rlc2t0b3AvUkwvdmVudi9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4RDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMWi9ob21lL2FyeWFuL0Rlc2t0b3AvUkwvdmVudi9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlGgAjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHAAAAAAAAAACFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
ppo-LunarLander-v2/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:01c6c61e4582935a68f90d001946e1a4e706a12d58cddec5f4bce5e727d2b0c3
3
  size 88490
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8471146ed46d072feb7479bd431b5f1f4e3d49f81f5c95bc8c9c710ddade8c6a
3
  size 88490
ppo-LunarLander-v2/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:df51e44d066525190fbcc51e01c7f25eb0814ab712f8e11f25872fbbf08a0d05
3
  size 43762
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:381cc72ecc522d14d2b2f338d477f9d5a5b0cda4f27cd4e87622b043d3af2ece
3
  size 43762
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 294.69690077237556, "std_reward": 21.046088291846075, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-11-09T12:16:11.241642"}
 
1
+ {"mean_reward": 312.49275830516535, "std_reward": 8.014238053452544, "is_deterministic": true, "n_eval_episodes": 2, "eval_datetime": "2023-11-10T11:52:00.292475"}