gabrielgcbs commited on
Commit
bb34f90
1 Parent(s): 40743d6

Update PPO LunarLander-v2 trained agent

Browse files
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
- value: -230.46 +/- 19.70
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: 79.25 +/- 108.92
20
  name: mean_reward
21
  verified: false
22
  ---
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f9ff34fbe50>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9ff34fbee0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9ff34fbf70>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9ff3480040>", "_build": "<function ActorCriticPolicy._build at 0x7f9ff34800d0>", "forward": "<function ActorCriticPolicy.forward at 0x7f9ff3480160>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9ff34801f0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f9ff3480280>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9ff3480310>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9ff34803a0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9ff3480430>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f9ff34f68a0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 114688, "_total_timesteps": 100000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1671247433320321781, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAKa6Wj7FFcA/kCbiPi5zPr3xV0w+brgcPgAAAAAAAAAAgFMDvcQtuj/HhKS+UeSlPQsUDz0cPgE+AAAAAAAAAAAWcwc/0o8GP/3r1j7KD1C/vQMSP0Azcz4AAAAAAAAAABrlaL5hhho/XlM1vPDQR7+kkYi+zBe6PAAAAAAAAAAAGjBuPQd0rz9S6OA+ChddvpQCc72O6/K8AAAAAAAAAADNhL+7klRXPwi6aDwaDAy/L1uTPf7TpD0AAAAAAAAAADNFMT7Cj4I/KwS2PhBk/L4TZTu9KpliPQAAAAAAAAAAs8MivUYwZz8LIey9PjclvykAXz1Y7nW9AAAAAAAAAABNXee90qKTPxmNiL5ixPC+Vww8vmrOGL4AAAAAAAAAAIC+Qj51k4Y/GMDjPgcr4L5j4OU8fRjVvAAAAAAAAAAAGr+NPcd6rT8irC4/OSuUvskJFL1jDb48AAAAAAAAAABNCkE+0CgmP5MkjD73g0u/zXE8PtJcDD4AAAAAAAAAAECm+j645ry9myFqPAGqGD39LDg6FpMBvgAAgD8AAIA/AJxHPuezKT4lz6Y8Oopjv0hTBT6yQD6+AAAAAAAAAAAddsM+l1kxP2PTDT/7nO2+M2MYPtU6Vz4AAAAAAAAAAABnbT5ROew+jiw7PuOAh7+/su8+I2aPvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.1468799999999999, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI8WjjiLWhWsCUhpRSlIwBbJRLV4wBdJRHQHi5BvNu+AV1fZQoaAZoCWgPQwj6RQn6CyhVwJSGlFKUaBVLmWgWR0B4uZuDSPU8dX2UKGgGaAloD0MI7DL8pxu4TsCUhpRSlGgVS4NoFkdAeLm1V5rxiHV9lChoBmgJaA9DCFoO9FDbsFDAlIaUUpRoFUtYaBZHQHi6KlLvkR11fZQoaAZoCWgPQwiVKlH2lvIjwJSGlFKUaBVLk2gWR0B4ulOymhugdX2UKGgGaAloD0MIdXXHYpsXUMCUhpRSlGgVS2NoFkdAeLrthNM4+HV9lChoBmgJaA9DCIaQ8/4/Ni7AlIaUUpRoFUtoaBZHQHi7IzJp35h1fZQoaAZoCWgPQwg8TPvm/uhFwJSGlFKUaBVLc2gWR0B4u8BYFJQMdX2UKGgGaAloD0MIBtUGJyLuasCUhpRSlGgVS5FoFkdAeLv3CsOoYXV9lChoBmgJaA9DCIiBrn0B6UvAlIaUUpRoFUtVaBZHQHi8npKSPlx1fZQoaAZoCWgPQwhmL9tOW39IwJSGlFKUaBVLUGgWR0B4vSWjXWe6dX2UKGgGaAloD0MIogkUsYjtP8CUhpRSlGgVS2JoFkdAeL088cMmW3V9lChoBmgJaA9DCGBa1Ce5KU7AlIaUUpRoFUuJaBZHQHi9WWdEsrd1fZQoaAZoCWgPQwjRsu4fCwNOwJSGlFKUaBVLRGgWR0B4vg2gnMMadX2UKGgGaAloD0MITGvT2F4TKMCUhpRSlGgVS6RoFkdAeL5bKRuCPXV9lChoBmgJaA9DCB+CqtGrHT1AlIaUUpRoFUtoaBZHQHi+m8274BV1fZQoaAZoCWgPQwhQATCeQW1AwJSGlFKUaBVLVWgWR0B4vzdLxqfwdX2UKGgGaAloD0MI9gfKbfsEQcCUhpRSlGgVS2VoFkdAeL+GorFwUHV9lChoBmgJaA9DCHOAYI4eAlbAlIaUUpRoFUtuaBZHQHi/+4G2TgV1fZQoaAZoCWgPQwgbKzHPSjI0wJSGlFKUaBVLk2gWR0B4v/gzguRLdX2UKGgGaAloD0MI7KF9rOBTTMCUhpRSlGgVS0hoFkdAeMAEeQuEmXV9lChoBmgJaA9DCB+fkJ23HVLAlIaUUpRoFUtoaBZHQHjBND2Jzkp1fZQoaAZoCWgPQwjZX3ZPHrBNwJSGlFKUaBVLTWgWR0B4wqpsGgSOdX2UKGgGaAloD0MITkS/tn7iZcCUhpRSlGgVS4NoFkdAeMKjVx0dR3V9lChoBmgJaA9DCCAJ+3YSqTHAlIaUUpRoFUunaBZHQHjC27OE/Sp1fZQoaAZoCWgPQwhCWmPQCUlRwJSGlFKUaBVLfGgWR0B4w1ezD4xldX2UKGgGaAloD0MIzXhb6bW3SMCUhpRSlGgVS1NoFkdAeMNYr8R+SnV9lChoBmgJaA9DCMk6HF2lalPAlIaUUpRoFUtzaBZHQHjDhiG34Kx1fZQoaAZoCWgPQwj8471qZaRHwJSGlFKUaBVLcGgWR0B4xA46wMYudX2UKGgGaAloD0MIJcreUs69UcCUhpRSlGgVS0poFkdAeMRq//NqxnV9lChoBmgJaA9DCAK37uapIFHAlIaUUpRoFUtmaBZHQHjEuso2GZh1fZQoaAZoCWgPQwhubeF5qaA2wJSGlFKUaBVLgmgWR0B4xO1kUbkwdX2UKGgGaAloD0MIYHglyXMUU8CUhpRSlGgVS4doFkdAeMVOAy2x6nV9lChoBmgJaA9DCG0BofXwK1rAlIaUUpRoFUtkaBZHQHjF71Iy0rt1fZQoaAZoCWgPQwjH8UOlEcMfQJSGlFKUaBVLWWgWR0B4xnd0q6OHdX2UKGgGaAloD0MI2/tUFRpMOMCUhpRSlGgVS4VoFkdAeMfnUUfxMHV9lChoBmgJaA9DCNrLttPWYCTAlIaUUpRoFUuVaBZHQHjIII0IkZ91fZQoaAZoCWgPQwippbkVwgoVwJSGlFKUaBVLXGgWR0B4yE6S1Vo6dX2UKGgGaAloD0MIvt798V4VAECUhpRSlGgVS5poFkdAeMjB8QZn+XV9lChoBmgJaA9DCN3qOel9ay3AlIaUUpRoFUtjaBZHQHjJSb2Dg651fZQoaAZoCWgPQwjQmEnUizdjwJSGlFKUaBVLcGgWR0B4yhU83dbgdX2UKGgGaAloD0MICf8iaMxgQcCUhpRSlGgVS3JoFkdAeMpfukUKzHV9lChoBmgJaA9DCE9d+SzPc0zAlIaUUpRoFUtKaBZHQHjLHHvMKTl1fZQoaAZoCWgPQwiN8PYgBCwiwJSGlFKUaBVLd2gWR0B4zAN+b3GodX2UKGgGaAloD0MIXB0AcVdjTsCUhpRSlGgVS35oFkdAeMwjB2wFDHV9lChoBmgJaA9DCGmKAKd3Xl7AlIaUUpRoFUt2aBZHQHjMMfV7QcB1fZQoaAZoCWgPQwjPL0rQX/lRwJSGlFKUaBVLa2gWR0B4zJrEcbR4dX2UKGgGaAloD0MI7QvohTt9V8CUhpRSlGgVS6ZoFkdAeMzHpbD/EXV9lChoBmgJaA9DCKQzMPKyJkLAlIaUUpRoFUuqaBZHQHjNDVtoBaN1fZQoaAZoCWgPQwhzvALRk8oywJSGlFKUaBVLUGgWR0B4zbWMCLdfdX2UKGgGaAloD0MIAkaXN4c5ScCUhpRSlGgVS5JoFkdAeM4wPiDM/3V9lChoBmgJaA9DCFZ/hGHAH1TAlIaUUpRoFUtfaBZHQHjPCPZIxxl1fZQoaAZoCWgPQwghrweT4gFCwJSGlFKUaBVLdWgWR0B4z0rf+CK8dX2UKGgGaAloD0MInrXbLjQXQsCUhpRSlGgVS25oFkdAeNDSNOuaF3V9lChoBmgJaA9DCONw5ldzrErAlIaUUpRoFUtQaBZHQHjSFByCFsZ1fZQoaAZoCWgPQwiWsgxxrOVKwJSGlFKUaBVLomgWR0B40iNaQmu1dX2UKGgGaAloD0MId4GSAgvAIMCUhpRSlGgVS51oFkdAeNI+dsi0OXV9lChoBmgJaA9DCC/6CtKMv0LAlIaUUpRoFUtjaBZHQHjSZljEvTR1fZQoaAZoCWgPQwiPAG4WL047wJSGlFKUaBVLXWgWR0B40oBdUsFudX2UKGgGaAloD0MICJEMObYoTcCUhpRSlGgVS3hoFkdAeNK4fOlfq3V9lChoBmgJaA9DCEW5NH7hN0/AlIaUUpRoFUtlaBZHQHjSm9L6DXh1fZQoaAZoCWgPQwjUSba6nHJBwJSGlFKUaBVLTWgWR0B40r4fwI+odX2UKGgGaAloD0MIrADfbd5FUcCUhpRSlGgVS2hoFkdAeNNedTYNAnV9lChoBmgJaA9DCM8Tz9kCRjvAlIaUUpRoFUuhaBZHQHjUjbWVeKN1fZQoaAZoCWgPQwjbMXVXdvkkwJSGlFKUaBVLjmgWR0B41PlRxcVydX2UKGgGaAloD0MIxJRIopfZOMCUhpRSlGgVS09oFkdAeNX7di2Dx3V9lChoBmgJaA9DCP1oOGVuGVbAlIaUUpRoFUtxaBZHQHjWXpbD/ER1fZQoaAZoCWgPQwiOk8K8x5hXwJSGlFKUaBVLhmgWR0B41tDF6zE8dX2UKGgGaAloD0MII7w9CAGgUsCUhpRSlGgVS4VoFkdAeNf4rBj4H3V9lChoBmgJaA9DCFmLTwEwdlDAlIaUUpRoFUtaaBZHQHjZLYbsF+x1fZQoaAZoCWgPQwhTIoleRmFHwJSGlFKUaBVLaWgWR0B42Zj9XLeRdX2UKGgGaAloD0MIwmuXNhx6TMCUhpRSlGgVS21oFkdAeNmX+VC5VnV9lChoBmgJaA9DCLJkjuVdb0fAlIaUUpRoFUt6aBZHQHjanmV7hNx1fZQoaAZoCWgPQwjRBfUtc74ywJSGlFKUaBVLf2gWR0B42rrRjSXudX2UKGgGaAloD0MIU8vW+iKUU8CUhpRSlGgVS0poFkdAeNswB5ooNXV9lChoBmgJaA9DCBwmGqTgw0rAlIaUUpRoFUuIaBZHQHjbsa4tpVV1fZQoaAZoCWgPQwjmlettMzk4wJSGlFKUaBVLYGgWR0B43byauwHJdX2UKGgGaAloD0MIWOTXDzGSYcCUhpRSlGgVS6poFkdAeN3GZuyeI3V9lChoBmgJaA9DCN53DI/97DnAlIaUUpRoFUumaBZHQHjeIInjQzF1fZQoaAZoCWgPQwjvqgfMQ7pAwJSGlFKUaBVLtWgWR0B43pH09QoDdX2UKGgGaAloD0MIXoB9dOraR8CUhpRSlGgVS45oFkdAeN6NcnmaIHV9lChoBmgJaA9DCG3lJf+TnxNAlIaUUpRoFUtzaBZHQHjesO5J9Rd1fZQoaAZoCWgPQwimmIOgo1tCwJSGlFKUaBVLlmgWR0B435KHwgDBdX2UKGgGaAloD0MI+7DeqBWkQ8CUhpRSlGgVS15oFkdAeOB6F/QSjHV9lChoBmgJaA9DCF69iowO01TAlIaUUpRoFUt0aBZHQHjhyI55qud1fZQoaAZoCWgPQwgTZW8p5/tMwJSGlFKUaBVLZmgWR0B44q3c580DdX2UKGgGaAloD0MIUkgyq3eIEkCUhpRSlGgVS11oFkdAeOKWXkYGdXV9lChoBmgJaA9DCMzR4/c2J0/AlIaUUpRoFUuiaBZHQHjj7DEWIoF1fZQoaAZoCWgPQwirIAa69uEzwJSGlFKUaBVLWWgWR0B45FfNRm9QdX2UKGgGaAloD0MIzSN/MPBkKMCUhpRSlGgVS5poFkdAeOTjpcHGCXV9lChoBmgJaA9DCP35tmCpgVbAlIaUUpRoFUuMaBZHQHjlCauwHJN1fZQoaAZoCWgPQwg6zm3CvT5ZwJSGlFKUaBVLYGgWR0B45Y/6fra/dX2UKGgGaAloD0MIk+LjE7J1QcCUhpRSlGgVS5xoFkdAeOYSowVTJnV9lChoBmgJaA9DCLUZpyGqlkrAlIaUUpRoFUtBaBZHQHjmkQoTfzl1fZQoaAZoCWgPQwgkfzDw3PBVwJSGlFKUaBVLeWgWR0B45qVrylN2dX2UKGgGaAloD0MIGmmpvB1yVMCUhpRSlGgVS3FoFkdAeObbo8p1BHV9lChoBmgJaA9DCP8+48KBo1TAlIaUUpRoFUtpaBZHQHjnVfAsTWZ1fZQoaAZoCWgPQwhbfXVVoGY6wJSGlFKUaBVLi2gWR0B46NK6FuejdX2UKGgGaAloD0MIsTBETl/HQMCUhpRSlGgVS3RoFkdAeOj+z+m3v3V9lChoBmgJaA9DCNV5VPzfYRFAlIaUUpRoFUuUaBZHQHjo95Y5ksl1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 32, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fb8779fc700>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb8779fc790>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb8779fc820>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb8779fc8b0>", "_build": "<function ActorCriticPolicy._build at 0x7fb8779fc940>", "forward": "<function ActorCriticPolicy.forward at 0x7fb8779fc9d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb8779fca60>", "_predict": "<function ActorCriticPolicy._predict at 0x7fb8779fcaf0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb8779fcb80>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb8779fcc10>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb8779fcca0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fb8779f3c30>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1671278833249054520, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAANpoCb+nB2u91pHkOmuJsTmAC48+kugVugAAgD8AAAAATcHZvmlbNT3O3MW9VGqOvWH+s7xAJoC9AAAAAAAAAADWQHu+lYEUPx4HJr2BKVW+m/vauy9qBDsAAAAAAAAAAPU5hL4KKDe9uni8vWVeXLwRX54+AucfPQAAgD8AAIA/oJFEPmn8LD5YGnq9utRXvZzhLLx7ODA9AAAAAAAAAACNQuA+HJB5vIVrDTw8eYM8oUc3vnPfRD0AAIA/AACAP426N74iwpQ/fk3vvjJba75c/x2+1rwevQAAAAAAAAAAQNgMPtyTAbzt99w9NGdlvNL1Xb03iUC9AACAPwAAgD8jT4M+j6QuPVOKRzr2HGE52grLPnKmsLkAAIA/AACAPwAsnjwjRb0/RQKHPhCEsz6/hjG6JqZBPQAAAAAAAAAAs1aMPc4gqj+gfYs+3Sq8vuo5gD09nAw9AAAAAAAAAACg52M+5+9yP6xemT6FIpa+Tev8PYrBDr0AAAAAAAAAAE22XD5ZbzQ/9soCPvLnEL6Onos9lp39vAAAAAAAAAAA7dVZPguroj2im0g9M6e2vflGgzzeI808AAAAAAAAAABNWnw+LTI3P+pn0jt68U2+KVb1PKIYnDsAAAAAAAAAADPJD76n7ak+bIIMPtIKML4iVio9YyTzOQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI7KAS17FubECUhpRSlIwBbJRN0wGMAXSUR0CGWrFId2gWdX2UKGgGaAloD0MIKxcq/1qSZUCUhpRSlGgVTY4CaBZHQIZbHqeK8+R1fZQoaAZoCWgPQwh3ZoLhXNM+QJSGlFKUaBVNOAFoFkdAhmM6AWi1zHV9lChoBmgJaA9DCGwJ+aBnnz9AlIaUUpRoFU3oA2gWR0CGZ2sH0K7adX2UKGgGaAloD0MIe4UF9wNvWECUhpRSlGgVTegDaBZHQIZpL212JSB1fZQoaAZoCWgPQwhCd0mcFQhoQJSGlFKUaBVNjgFoFkdAhm5gctGutHV9lChoBmgJaA9DCPflzHYFt2xAlIaUUpRoFU2EAWgWR0CGb9VrAP/adX2UKGgGaAloD0MIoN/3b16LaECUhpRSlGgVTeQBaBZHQIZ29mFrVON1fZQoaAZoCWgPQwhUck7soexoQJSGlFKUaBVNrgFoFkdAhnntmlImPnV9lChoBmgJaA9DCKLsLeV8DG5AlIaUUpRoFU2pAWgWR0CGpg5sCT2WdX2UKGgGaAloD0MIZ7RVSWTvOsCUhpRSlGgVTZsBaBZHQIamaqZML4N1fZQoaAZoCWgPQwisU+V7xj9rQJSGlFKUaBVNsAFoFkdAhq5Grjo6jnV9lChoBmgJaA9DCEdxjjq6mGdAlIaUUpRoFU3RAWgWR0CGrohUR3/xdX2UKGgGaAloD0MIsg3cgbr6ZkCUhpRSlGgVTesBaBZHQIa4USmIj4Z1fZQoaAZoCWgPQwi9/E6TGdtoQJSGlFKUaBVN8gFoFkdAhriMOwxFiXV9lChoBmgJaA9DCGO2ZFWESWpAlIaUUpRoFU2yAWgWR0CGwhaLXL/0dX2UKGgGaAloD0MIy4Rf6uftbECUhpRSlGgVTZQBaBZHQIbGT5GjKxN1fZQoaAZoCWgPQwjcvdwnR1hrQJSGlFKUaBVNlQFoFkdAhsgZ1mrbQHV9lChoBmgJaA9DCFx2iH/Yn1FAlIaUUpRoFU3oA2gWR0CGyRpdKNADdX2UKGgGaAloD0MIdcx5xr6XbECUhpRSlGgVTa4BaBZHQIbS+qFRHgB1fZQoaAZoCWgPQwisi9toAM5WQJSGlFKUaBVN6ANoFkdAhtOlrdnCf3V9lChoBmgJaA9DCK+zIf/Me2hAlIaUUpRoFU1TA2gWR0CG1FnOjZctdX2UKGgGaAloD0MIvR3htOA9PcCUhpRSlGgVTZ8BaBZHQIbZZoysS011fZQoaAZoCWgPQwiCkCxgAsdJwJSGlFKUaBVN4gFoFkdAhtuxLK3d9HV9lChoBmgJaA9DCOAsJctJymxAlIaUUpRoFU3AAWgWR0CG3TNFBppOdX2UKGgGaAloD0MIHlIMkGi7V8CUhpRSlGgVTYsBaBZHQIbxbqlgtvp1fZQoaAZoCWgPQwju6lVkdNxnQJSGlFKUaBVNmwFoFkdAhvf5n13+uXV9lChoBmgJaA9DCAd7E0PyPGlAlIaUUpRoFU2hA2gWR0CG+VUBnzxxdX2UKGgGaAloD0MIbTttjYh5a0CUhpRSlGgVTaIBaBZHQIb716NVBD51fZQoaAZoCWgPQwj7yRgfZtNEwJSGlFKUaBVNUwFoFkdAhv0Nrj5sTHV9lChoBmgJaA9DCHsxlBNt9mtAlIaUUpRoFU2/AWgWR0CG/m9xIatLdX2UKGgGaAloD0MIuVFkraFFXECUhpRSlGgVTZQCaBZHQIb/M3dbgTB1fZQoaAZoCWgPQwgFjC5vjnpqQJSGlFKUaBVNmQFoFkdAhwOvttygf3V9lChoBmgJaA9DCGwldJfEb09AlIaUUpRoFU3oA2gWR0CHB+vgWJrMdX2UKGgGaAloD0MIqkNuhpsgaUCUhpRSlGgVTcIBaBZHQIcIajHn2Zl1fZQoaAZoCWgPQwjxf0dUqKBEwJSGlFKUaBVNewFoFkdAhwmosyzolnV9lChoBmgJaA9DCCRE+YIW0iDAlIaUUpRoFU2nAWgWR0CHCj8zAN5MdX2UKGgGaAloD0MIqHNFKSEgaECUhpRSlGgVTSgCaBZHQIc+7BXS0Bx1fZQoaAZoCWgPQwgRGyycJN9rQJSGlFKUaBVNlAFoFkdAh0NH/cWTHXV9lChoBmgJaA9DCC/7dac7311AlIaUUpRoFU3oA2gWR0CHSIH+IdlvdX2UKGgGaAloD0MIv2A3bFs4aECUhpRSlGgVTZ4BaBZHQIdLe0mdAgR1fZQoaAZoCWgPQwhozvqUY51nQJSGlFKUaBVNowFoFkdAh1DTNMXaanV9lChoBmgJaA9DCDy/KEF/40rAlIaUUpRoFU2gAWgWR0CHUUuaF23bdX2UKGgGaAloD0MIbOnRVE+3X0CUhpRSlGgVTegDaBZHQIdR3dRBNVR1fZQoaAZoCWgPQwjjx5i7lhlTQJSGlFKUaBVN6ANoFkdAh1IXY+Sr53V9lChoBmgJaA9DCFNcVfbdlmVAlIaUUpRoFU3oAWgWR0CHUvARChN/dX2UKGgGaAloD0MIQDTz5Bq2bUCUhpRSlGgVTcwBaBZHQIdUBoRIz311fZQoaAZoCWgPQwgP7zmwnJxlQJSGlFKUaBVN3QFoFkdAh1SnGKhtcnV9lChoBmgJaA9DCNV7Kqe9G21AlIaUUpRoFU2SAWgWR0CHWix1xKg7dX2UKGgGaAloD0MITkaVYdxFN8CUhpRSlGgVTd8BaBZHQIdayRQrMC91fZQoaAZoCWgPQwij6exk8M9oQJSGlFKUaBVNxAFoFkdAh1vfYzzmOnV9lChoBmgJaA9DCHwOLEfIGk3AlIaUUpRoFU3CAWgWR0CHXBj4HoovdX2UKGgGaAloD0MIZOjYQSXIRMCUhpRSlGgVTXMBaBZHQIdvbBfrrxB1fZQoaAZoCWgPQwibcRqiCrhpQJSGlFKUaBVNuAFoFkdAh2+PCl7+k3V9lChoBmgJaA9DCLYwC+0cVW1AlIaUUpRoFU2MAWgWR0CHfslBQemvdX2UKGgGaAloD0MIGXJsPcMjaUCUhpRSlGgVTbIBaBZHQIeAIQHzH0d1fZQoaAZoCWgPQwgewY2ULS9oQJSGlFKUaBVNwQFoFkdAh4WTAnDziHV9lChoBmgJaA9DCFCm0eTi0WZAlIaUUpRoFU3NAWgWR0CHhjXEqDsddX2UKGgGaAloD0MI9BjlmRfAZ0CUhpRSlGgVTdQBaBZHQIeG/6qKgqV1fZQoaAZoCWgPQwgQWDm0SNJqQJSGlFKUaBVNDwJoFkdAh43iqIacZ3V9lChoBmgJaA9DCPJfIAgQU2pAlIaUUpRoFU1tAmgWR0CHkC4rBj4IdX2UKGgGaAloD0MIaOp1i0ANaUCUhpRSlGgVTdoBaBZHQIeSyFdszl91fZQoaAZoCWgPQwgSiULLOpppQJSGlFKUaBVNywFoFkdAh5NbsF+uvHV9lChoBmgJaA9DCBLaci7FQmpAlIaUUpRoFU3lAWgWR0CHlHqXWvr4dX2UKGgGaAloD0MIpivYRrzaaECUhpRSlGgVTS0CaBZHQIedL9l2/zt1fZQoaAZoCWgPQwgcP1QaMYRUQJSGlFKUaBVN6ANoFkdAh54Occ2itnV9lChoBmgJaA9DCFxXzAjvSmhAlIaUUpRoFU29AWgWR0CHplkNnXd1dX2UKGgGaAloD0MICwkYXd60V0CUhpRSlGgVTegDaBZHQIeweZVn27F1fZQoaAZoCWgPQwik4v+OKEtsQJSGlFKUaBVNqwFoFkdAh7IV3MY/FHV9lChoBmgJaA9DCO/H7ZdPw2hAlIaUUpRoFU3CAWgWR0CH4GrsByS3dX2UKGgGaAloD0MIhQZi2cz1aECUhpRSlGgVTbsBaBZHQIfgrZezD4x1fZQoaAZoCWgPQwht4uR+BxRsQJSGlFKUaBVN1AFoFkdAh+MXfqHGj3V9lChoBmgJaA9DCOnX1k//YTTAlIaUUpRoFU2zAWgWR0CH5iM6RyOrdX2UKGgGaAloD0MIeCY0SawmakCUhpRSlGgVTckBaBZHQIfrGf5DZ151fZQoaAZoCWgPQwiBI4EGmwNewJSGlFKUaBVNzwNoFkdAh+uTyJ9Ao3V9lChoBmgJaA9DCEw0SMFTwGlAlIaUUpRoFU24AWgWR0CH7JA0Kqn4dX2UKGgGaAloD0MIoHB2axmpaECUhpRSlGgVTcEBaBZHQIfs3w5NoJ11fZQoaAZoCWgPQwiismFNZZk0wJSGlFKUaBVNTwFoFkdAh+0QazeGf3V9lChoBmgJaA9DCNnQzf5AimVAlIaUUpRoFU3VAWgWR0CH8EBGx2SudX2UKGgGaAloD0MIe4MvTKaxbECUhpRSlGgVTZQBaBZHQIfyZlz2exx1fZQoaAZoCWgPQwhT7Ggc6oVEwJSGlFKUaBVNKwFoFkdAiAJGapgkT3V9lChoBmgJaA9DCF+Zt+o6DktAlIaUUpRoFU3oA2gWR0CIDpDiwSrYdX2UKGgGaAloD0MIdQXbiCcqa0CUhpRSlGgVTa8BaBZHQIgSLoB7u2J1fZQoaAZoCWgPQwjlJ9U+HdctwJSGlFKUaBVNSQFoFkdAiBKwm3OObXV9lChoBmgJaA9DCMpv0clSEmtAlIaUUpRoFU3WAWgWR0CIFvdFfAsTdX2UKGgGaAloD0MIIqgavRq3aUCUhpRSlGgVTSMCaBZHQIgX8iMYMv11fZQoaAZoCWgPQwguU5PgjTxmQJSGlFKUaBVNdAJoFkdAiBh2sRxtHnV9lChoBmgJaA9DCNoaEYyD41VAlIaUUpRoFU3oA2gWR0CIG0dtEXtTdX2UKGgGaAloD0MIGejaF9DlVMCUhpRSlGgVTcQBaBZHQIggEnXumaZ1fZQoaAZoCWgPQwhBKO/jaBZOwJSGlFKUaBVNvgFoFkdAiCaXz+WGAXV9lChoBmgJaA9DCELSp1X00UHAlIaUUpRoFU3iAWgWR0CIJ+76pHZsdX2UKGgGaAloD0MIebEwRE41Z0CUhpRSlGgVTRsCaBZHQIgoQ1BMSK51fZQoaAZoCWgPQwia7+AnjvdoQJSGlFKUaBVNkAJoFkdAiC/5XuE253V9lChoBmgJaA9DCKTBbW1h3mtAlIaUUpRoFU3jAWgWR0CIO7bXYlIFdX2UKGgGaAloD0MIAmN9A5P8bUCUhpRSlGgVTdoCaBZHQIg/rzErGzd1fZQoaAZoCWgPQwhdUrXdBFlCwJSGlFKUaBVNvAFoFkdAiEGyyD7Ik3V9lChoBmgJaA9DCIwQHm0c8GlAlIaUUpRoFU3qAWgWR0CISrlrdnCgdX2UKGgGaAloD0MIY7SOqiYQV0CUhpRSlGgVTegDaBZHQIhNFfCyhSN1fZQoaAZoCWgPQwhnfcoxWVQtwJSGlFKUaBVNjAFoFkdAiE4CcG1QZXV9lChoBmgJaA9DCAHChxItF0zAlIaUUpRoFU3MAWgWR0CIT+ujASFodWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.001, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:8486bb25e77230aceec640edf83880832351c5c72203bbcd0b3ea5db18071629
3
- size 147081
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:739a0dee9e6bdce2a6ed486d37b1440b916c279d1069c4e732b78c7a21738dcf
3
+ size 147215
ppo-LunarLander-v2/data CHANGED
@@ -4,19 +4,19 @@
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function ActorCriticPolicy.__init__ at 0x7f9ff34fbe50>",
8
- "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9ff34fbee0>",
9
- "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9ff34fbf70>",
10
- "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9ff3480040>",
11
- "_build": "<function ActorCriticPolicy._build at 0x7f9ff34800d0>",
12
- "forward": "<function ActorCriticPolicy.forward at 0x7f9ff3480160>",
13
- "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9ff34801f0>",
14
- "_predict": "<function ActorCriticPolicy._predict at 0x7f9ff3480280>",
15
- "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9ff3480310>",
16
- "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9ff34803a0>",
17
- "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9ff3480430>",
18
  "__abstractmethods__": "frozenset()",
19
- "_abc_impl": "<_abc_data object at 0x7f9ff34f68a0>"
20
  },
21
  "verbose": 1,
22
  "policy_kwargs": {},
@@ -42,12 +42,12 @@
42
  "_np_random": null
43
  },
44
  "n_envs": 16,
45
- "num_timesteps": 114688,
46
- "_total_timesteps": 100000,
47
  "_num_timesteps_at_start": 0,
48
  "seed": null,
49
  "action_noise": null,
50
- "start_time": 1671247433320321781,
51
  "learning_rate": 0.0003,
52
  "tensorboard_log": null,
53
  "lr_schedule": {
@@ -56,7 +56,7 @@
56
  },
57
  "_last_obs": {
58
  ":type:": "<class 'numpy.ndarray'>",
59
- ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAKa6Wj7FFcA/kCbiPi5zPr3xV0w+brgcPgAAAAAAAAAAgFMDvcQtuj/HhKS+UeSlPQsUDz0cPgE+AAAAAAAAAAAWcwc/0o8GP/3r1j7KD1C/vQMSP0Azcz4AAAAAAAAAABrlaL5hhho/XlM1vPDQR7+kkYi+zBe6PAAAAAAAAAAAGjBuPQd0rz9S6OA+ChddvpQCc72O6/K8AAAAAAAAAADNhL+7klRXPwi6aDwaDAy/L1uTPf7TpD0AAAAAAAAAADNFMT7Cj4I/KwS2PhBk/L4TZTu9KpliPQAAAAAAAAAAs8MivUYwZz8LIey9PjclvykAXz1Y7nW9AAAAAAAAAABNXee90qKTPxmNiL5ixPC+Vww8vmrOGL4AAAAAAAAAAIC+Qj51k4Y/GMDjPgcr4L5j4OU8fRjVvAAAAAAAAAAAGr+NPcd6rT8irC4/OSuUvskJFL1jDb48AAAAAAAAAABNCkE+0CgmP5MkjD73g0u/zXE8PtJcDD4AAAAAAAAAAECm+j645ry9myFqPAGqGD39LDg6FpMBvgAAgD8AAIA/AJxHPuezKT4lz6Y8Oopjv0hTBT6yQD6+AAAAAAAAAAAddsM+l1kxP2PTDT/7nO2+M2MYPtU6Vz4AAAAAAAAAAABnbT5ROew+jiw7PuOAh7+/su8+I2aPvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
  },
61
  "_last_episode_starts": {
62
  ":type:": "<class 'numpy.ndarray'>",
@@ -66,20 +66,20 @@
66
  "_episode_num": 0,
67
  "use_sde": false,
68
  "sde_sample_freq": -1,
69
- "_current_progress_remaining": -0.1468799999999999,
70
  "ep_info_buffer": {
71
  ":type:": "<class 'collections.deque'>",
72
- ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI8WjjiLWhWsCUhpRSlIwBbJRLV4wBdJRHQHi5BvNu+AV1fZQoaAZoCWgPQwj6RQn6CyhVwJSGlFKUaBVLmWgWR0B4uZuDSPU8dX2UKGgGaAloD0MI7DL8pxu4TsCUhpRSlGgVS4NoFkdAeLm1V5rxiHV9lChoBmgJaA9DCFoO9FDbsFDAlIaUUpRoFUtYaBZHQHi6KlLvkR11fZQoaAZoCWgPQwiVKlH2lvIjwJSGlFKUaBVLk2gWR0B4ulOymhugdX2UKGgGaAloD0MIdXXHYpsXUMCUhpRSlGgVS2NoFkdAeLrthNM4+HV9lChoBmgJaA9DCIaQ8/4/Ni7AlIaUUpRoFUtoaBZHQHi7IzJp35h1fZQoaAZoCWgPQwg8TPvm/uhFwJSGlFKUaBVLc2gWR0B4u8BYFJQMdX2UKGgGaAloD0MIBtUGJyLuasCUhpRSlGgVS5FoFkdAeLv3CsOoYXV9lChoBmgJaA9DCIiBrn0B6UvAlIaUUpRoFUtVaBZHQHi8npKSPlx1fZQoaAZoCWgPQwhmL9tOW39IwJSGlFKUaBVLUGgWR0B4vSWjXWe6dX2UKGgGaAloD0MIogkUsYjtP8CUhpRSlGgVS2JoFkdAeL088cMmW3V9lChoBmgJaA9DCGBa1Ce5KU7AlIaUUpRoFUuJaBZHQHi9WWdEsrd1fZQoaAZoCWgPQwjRsu4fCwNOwJSGlFKUaBVLRGgWR0B4vg2gnMMadX2UKGgGaAloD0MITGvT2F4TKMCUhpRSlGgVS6RoFkdAeL5bKRuCPXV9lChoBmgJaA9DCB+CqtGrHT1AlIaUUpRoFUtoaBZHQHi+m8274BV1fZQoaAZoCWgPQwhQATCeQW1AwJSGlFKUaBVLVWgWR0B4vzdLxqfwdX2UKGgGaAloD0MI9gfKbfsEQcCUhpRSlGgVS2VoFkdAeL+GorFwUHV9lChoBmgJaA9DCHOAYI4eAlbAlIaUUpRoFUtuaBZHQHi/+4G2TgV1fZQoaAZoCWgPQwgbKzHPSjI0wJSGlFKUaBVLk2gWR0B4v/gzguRLdX2UKGgGaAloD0MI7KF9rOBTTMCUhpRSlGgVS0hoFkdAeMAEeQuEmXV9lChoBmgJaA9DCB+fkJ23HVLAlIaUUpRoFUtoaBZHQHjBND2Jzkp1fZQoaAZoCWgPQwjZX3ZPHrBNwJSGlFKUaBVLTWgWR0B4wqpsGgSOdX2UKGgGaAloD0MITkS/tn7iZcCUhpRSlGgVS4NoFkdAeMKjVx0dR3V9lChoBmgJaA9DCCAJ+3YSqTHAlIaUUpRoFUunaBZHQHjC27OE/Sp1fZQoaAZoCWgPQwhCWmPQCUlRwJSGlFKUaBVLfGgWR0B4w1ezD4xldX2UKGgGaAloD0MIzXhb6bW3SMCUhpRSlGgVS1NoFkdAeMNYr8R+SnV9lChoBmgJaA9DCMk6HF2lalPAlIaUUpRoFUtzaBZHQHjDhiG34Kx1fZQoaAZoCWgPQwj8471qZaRHwJSGlFKUaBVLcGgWR0B4xA46wMYudX2UKGgGaAloD0MIJcreUs69UcCUhpRSlGgVS0poFkdAeMRq//NqxnV9lChoBmgJaA9DCAK37uapIFHAlIaUUpRoFUtmaBZHQHjEuso2GZh1fZQoaAZoCWgPQwhubeF5qaA2wJSGlFKUaBVLgmgWR0B4xO1kUbkwdX2UKGgGaAloD0MIYHglyXMUU8CUhpRSlGgVS4doFkdAeMVOAy2x6nV9lChoBmgJaA9DCG0BofXwK1rAlIaUUpRoFUtkaBZHQHjF71Iy0rt1fZQoaAZoCWgPQwjH8UOlEcMfQJSGlFKUaBVLWWgWR0B4xnd0q6OHdX2UKGgGaAloD0MI2/tUFRpMOMCUhpRSlGgVS4VoFkdAeMfnUUfxMHV9lChoBmgJaA9DCNrLttPWYCTAlIaUUpRoFUuVaBZHQHjIII0IkZ91fZQoaAZoCWgPQwippbkVwgoVwJSGlFKUaBVLXGgWR0B4yE6S1Vo6dX2UKGgGaAloD0MIvt798V4VAECUhpRSlGgVS5poFkdAeMjB8QZn+XV9lChoBmgJaA9DCN3qOel9ay3AlIaUUpRoFUtjaBZHQHjJSb2Dg651fZQoaAZoCWgPQwjQmEnUizdjwJSGlFKUaBVLcGgWR0B4yhU83dbgdX2UKGgGaAloD0MICf8iaMxgQcCUhpRSlGgVS3JoFkdAeMpfukUKzHV9lChoBmgJaA9DCE9d+SzPc0zAlIaUUpRoFUtKaBZHQHjLHHvMKTl1fZQoaAZoCWgPQwiN8PYgBCwiwJSGlFKUaBVLd2gWR0B4zAN+b3GodX2UKGgGaAloD0MIXB0AcVdjTsCUhpRSlGgVS35oFkdAeMwjB2wFDHV9lChoBmgJaA9DCGmKAKd3Xl7AlIaUUpRoFUt2aBZHQHjMMfV7QcB1fZQoaAZoCWgPQwjPL0rQX/lRwJSGlFKUaBVLa2gWR0B4zJrEcbR4dX2UKGgGaAloD0MI7QvohTt9V8CUhpRSlGgVS6ZoFkdAeMzHpbD/EXV9lChoBmgJaA9DCKQzMPKyJkLAlIaUUpRoFUuqaBZHQHjNDVtoBaN1fZQoaAZoCWgPQwhzvALRk8oywJSGlFKUaBVLUGgWR0B4zbWMCLdfdX2UKGgGaAloD0MIAkaXN4c5ScCUhpRSlGgVS5JoFkdAeM4wPiDM/3V9lChoBmgJaA9DCFZ/hGHAH1TAlIaUUpRoFUtfaBZHQHjPCPZIxxl1fZQoaAZoCWgPQwghrweT4gFCwJSGlFKUaBVLdWgWR0B4z0rf+CK8dX2UKGgGaAloD0MInrXbLjQXQsCUhpRSlGgVS25oFkdAeNDSNOuaF3V9lChoBmgJaA9DCONw5ldzrErAlIaUUpRoFUtQaBZHQHjSFByCFsZ1fZQoaAZoCWgPQwiWsgxxrOVKwJSGlFKUaBVLomgWR0B40iNaQmu1dX2UKGgGaAloD0MId4GSAgvAIMCUhpRSlGgVS51oFkdAeNI+dsi0OXV9lChoBmgJaA9DCC/6CtKMv0LAlIaUUpRoFUtjaBZHQHjSZljEvTR1fZQoaAZoCWgPQwiPAG4WL047wJSGlFKUaBVLXWgWR0B40oBdUsFudX2UKGgGaAloD0MICJEMObYoTcCUhpRSlGgVS3hoFkdAeNK4fOlfq3V9lChoBmgJaA9DCEW5NH7hN0/AlIaUUpRoFUtlaBZHQHjSm9L6DXh1fZQoaAZoCWgPQwjUSba6nHJBwJSGlFKUaBVLTWgWR0B40r4fwI+odX2UKGgGaAloD0MIrADfbd5FUcCUhpRSlGgVS2hoFkdAeNNedTYNAnV9lChoBmgJaA9DCM8Tz9kCRjvAlIaUUpRoFUuhaBZHQHjUjbWVeKN1fZQoaAZoCWgPQwjbMXVXdvkkwJSGlFKUaBVLjmgWR0B41PlRxcVydX2UKGgGaAloD0MIxJRIopfZOMCUhpRSlGgVS09oFkdAeNX7di2Dx3V9lChoBmgJaA9DCP1oOGVuGVbAlIaUUpRoFUtxaBZHQHjWXpbD/ER1fZQoaAZoCWgPQwiOk8K8x5hXwJSGlFKUaBVLhmgWR0B41tDF6zE8dX2UKGgGaAloD0MII7w9CAGgUsCUhpRSlGgVS4VoFkdAeNf4rBj4H3V9lChoBmgJaA9DCFmLTwEwdlDAlIaUUpRoFUtaaBZHQHjZLYbsF+x1fZQoaAZoCWgPQwhTIoleRmFHwJSGlFKUaBVLaWgWR0B42Zj9XLeRdX2UKGgGaAloD0MIwmuXNhx6TMCUhpRSlGgVS21oFkdAeNmX+VC5VnV9lChoBmgJaA9DCLJkjuVdb0fAlIaUUpRoFUt6aBZHQHjanmV7hNx1fZQoaAZoCWgPQwjRBfUtc74ywJSGlFKUaBVLf2gWR0B42rrRjSXudX2UKGgGaAloD0MIU8vW+iKUU8CUhpRSlGgVS0poFkdAeNswB5ooNXV9lChoBmgJaA9DCBwmGqTgw0rAlIaUUpRoFUuIaBZHQHjbsa4tpVV1fZQoaAZoCWgPQwjmlettMzk4wJSGlFKUaBVLYGgWR0B43byauwHJdX2UKGgGaAloD0MIWOTXDzGSYcCUhpRSlGgVS6poFkdAeN3GZuyeI3V9lChoBmgJaA9DCN53DI/97DnAlIaUUpRoFUumaBZHQHjeIInjQzF1fZQoaAZoCWgPQwjvqgfMQ7pAwJSGlFKUaBVLtWgWR0B43pH09QoDdX2UKGgGaAloD0MIXoB9dOraR8CUhpRSlGgVS45oFkdAeN6NcnmaIHV9lChoBmgJaA9DCG3lJf+TnxNAlIaUUpRoFUtzaBZHQHjesO5J9Rd1fZQoaAZoCWgPQwimmIOgo1tCwJSGlFKUaBVLlmgWR0B435KHwgDBdX2UKGgGaAloD0MI+7DeqBWkQ8CUhpRSlGgVS15oFkdAeOB6F/QSjHV9lChoBmgJaA9DCF69iowO01TAlIaUUpRoFUt0aBZHQHjhyI55qud1fZQoaAZoCWgPQwgTZW8p5/tMwJSGlFKUaBVLZmgWR0B44q3c580DdX2UKGgGaAloD0MIUkgyq3eIEkCUhpRSlGgVS11oFkdAeOKWXkYGdXV9lChoBmgJaA9DCMzR4/c2J0/AlIaUUpRoFUuiaBZHQHjj7DEWIoF1fZQoaAZoCWgPQwirIAa69uEzwJSGlFKUaBVLWWgWR0B45FfNRm9QdX2UKGgGaAloD0MIzSN/MPBkKMCUhpRSlGgVS5poFkdAeOTjpcHGCXV9lChoBmgJaA9DCP35tmCpgVbAlIaUUpRoFUuMaBZHQHjlCauwHJN1fZQoaAZoCWgPQwg6zm3CvT5ZwJSGlFKUaBVLYGgWR0B45Y/6fra/dX2UKGgGaAloD0MIk+LjE7J1QcCUhpRSlGgVS5xoFkdAeOYSowVTJnV9lChoBmgJaA9DCLUZpyGqlkrAlIaUUpRoFUtBaBZHQHjmkQoTfzl1fZQoaAZoCWgPQwgkfzDw3PBVwJSGlFKUaBVLeWgWR0B45qVrylN2dX2UKGgGaAloD0MIGmmpvB1yVMCUhpRSlGgVS3FoFkdAeObbo8p1BHV9lChoBmgJaA9DCP8+48KBo1TAlIaUUpRoFUtpaBZHQHjnVfAsTWZ1fZQoaAZoCWgPQwhbfXVVoGY6wJSGlFKUaBVLi2gWR0B46NK6FuejdX2UKGgGaAloD0MIsTBETl/HQMCUhpRSlGgVS3RoFkdAeOj+z+m3v3V9lChoBmgJaA9DCNV5VPzfYRFAlIaUUpRoFUuUaBZHQHjo95Y5ksl1ZS4="
73
  },
74
  "ep_success_buffer": {
75
  ":type:": "<class 'collections.deque'>",
76
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
  },
78
- "_n_updates": 32,
79
  "n_steps": 1024,
80
- "gamma": 0.999,
81
- "gae_lambda": 0.98,
82
- "ent_coef": 0.01,
83
  "vf_coef": 0.5,
84
  "max_grad_norm": 0.5,
85
  "batch_size": 64,
 
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fb8779fc700>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb8779fc790>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb8779fc820>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb8779fc8b0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fb8779fc940>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fb8779fc9d0>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb8779fca60>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fb8779fcaf0>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb8779fcb80>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb8779fcc10>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb8779fcca0>",
18
  "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7fb8779f3c30>"
20
  },
21
  "verbose": 1,
22
  "policy_kwargs": {},
 
42
  "_np_random": null
43
  },
44
  "n_envs": 16,
45
+ "num_timesteps": 507904,
46
+ "_total_timesteps": 500000,
47
  "_num_timesteps_at_start": 0,
48
  "seed": null,
49
  "action_noise": null,
50
+ "start_time": 1671278833249054520,
51
  "learning_rate": 0.0003,
52
  "tensorboard_log": null,
53
  "lr_schedule": {
 
56
  },
57
  "_last_obs": {
58
  ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAANpoCb+nB2u91pHkOmuJsTmAC48+kugVugAAgD8AAAAATcHZvmlbNT3O3MW9VGqOvWH+s7xAJoC9AAAAAAAAAADWQHu+lYEUPx4HJr2BKVW+m/vauy9qBDsAAAAAAAAAAPU5hL4KKDe9uni8vWVeXLwRX54+AucfPQAAgD8AAIA/oJFEPmn8LD5YGnq9utRXvZzhLLx7ODA9AAAAAAAAAACNQuA+HJB5vIVrDTw8eYM8oUc3vnPfRD0AAIA/AACAP426N74iwpQ/fk3vvjJba75c/x2+1rwevQAAAAAAAAAAQNgMPtyTAbzt99w9NGdlvNL1Xb03iUC9AACAPwAAgD8jT4M+j6QuPVOKRzr2HGE52grLPnKmsLkAAIA/AACAPwAsnjwjRb0/RQKHPhCEsz6/hjG6JqZBPQAAAAAAAAAAs1aMPc4gqj+gfYs+3Sq8vuo5gD09nAw9AAAAAAAAAACg52M+5+9yP6xemT6FIpa+Tev8PYrBDr0AAAAAAAAAAE22XD5ZbzQ/9soCPvLnEL6Onos9lp39vAAAAAAAAAAA7dVZPguroj2im0g9M6e2vflGgzzeI808AAAAAAAAAABNWnw+LTI3P+pn0jt68U2+KVb1PKIYnDsAAAAAAAAAADPJD76n7ak+bIIMPtIKML4iVio9YyTzOQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
  },
61
  "_last_episode_starts": {
62
  ":type:": "<class 'numpy.ndarray'>",
 
66
  "_episode_num": 0,
67
  "use_sde": false,
68
  "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
  "ep_info_buffer": {
71
  ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI7KAS17FubECUhpRSlIwBbJRN0wGMAXSUR0CGWrFId2gWdX2UKGgGaAloD0MIKxcq/1qSZUCUhpRSlGgVTY4CaBZHQIZbHqeK8+R1fZQoaAZoCWgPQwh3ZoLhXNM+QJSGlFKUaBVNOAFoFkdAhmM6AWi1zHV9lChoBmgJaA9DCGwJ+aBnnz9AlIaUUpRoFU3oA2gWR0CGZ2sH0K7adX2UKGgGaAloD0MIe4UF9wNvWECUhpRSlGgVTegDaBZHQIZpL212JSB1fZQoaAZoCWgPQwhCd0mcFQhoQJSGlFKUaBVNjgFoFkdAhm5gctGutHV9lChoBmgJaA9DCPflzHYFt2xAlIaUUpRoFU2EAWgWR0CGb9VrAP/adX2UKGgGaAloD0MIoN/3b16LaECUhpRSlGgVTeQBaBZHQIZ29mFrVON1fZQoaAZoCWgPQwhUck7soexoQJSGlFKUaBVNrgFoFkdAhnntmlImPnV9lChoBmgJaA9DCKLsLeV8DG5AlIaUUpRoFU2pAWgWR0CGpg5sCT2WdX2UKGgGaAloD0MIZ7RVSWTvOsCUhpRSlGgVTZsBaBZHQIamaqZML4N1fZQoaAZoCWgPQwisU+V7xj9rQJSGlFKUaBVNsAFoFkdAhq5Grjo6jnV9lChoBmgJaA9DCEdxjjq6mGdAlIaUUpRoFU3RAWgWR0CGrohUR3/xdX2UKGgGaAloD0MIsg3cgbr6ZkCUhpRSlGgVTesBaBZHQIa4USmIj4Z1fZQoaAZoCWgPQwi9/E6TGdtoQJSGlFKUaBVN8gFoFkdAhriMOwxFiXV9lChoBmgJaA9DCGO2ZFWESWpAlIaUUpRoFU2yAWgWR0CGwhaLXL/0dX2UKGgGaAloD0MIy4Rf6uftbECUhpRSlGgVTZQBaBZHQIbGT5GjKxN1fZQoaAZoCWgPQwjcvdwnR1hrQJSGlFKUaBVNlQFoFkdAhsgZ1mrbQHV9lChoBmgJaA9DCFx2iH/Yn1FAlIaUUpRoFU3oA2gWR0CGyRpdKNADdX2UKGgGaAloD0MIdcx5xr6XbECUhpRSlGgVTa4BaBZHQIbS+qFRHgB1fZQoaAZoCWgPQwisi9toAM5WQJSGlFKUaBVN6ANoFkdAhtOlrdnCf3V9lChoBmgJaA9DCK+zIf/Me2hAlIaUUpRoFU1TA2gWR0CG1FnOjZctdX2UKGgGaAloD0MIvR3htOA9PcCUhpRSlGgVTZ8BaBZHQIbZZoysS011fZQoaAZoCWgPQwiCkCxgAsdJwJSGlFKUaBVN4gFoFkdAhtuxLK3d9HV9lChoBmgJaA9DCOAsJctJymxAlIaUUpRoFU3AAWgWR0CG3TNFBppOdX2UKGgGaAloD0MIHlIMkGi7V8CUhpRSlGgVTYsBaBZHQIbxbqlgtvp1fZQoaAZoCWgPQwju6lVkdNxnQJSGlFKUaBVNmwFoFkdAhvf5n13+uXV9lChoBmgJaA9DCAd7E0PyPGlAlIaUUpRoFU2hA2gWR0CG+VUBnzxxdX2UKGgGaAloD0MIbTttjYh5a0CUhpRSlGgVTaIBaBZHQIb716NVBD51fZQoaAZoCWgPQwj7yRgfZtNEwJSGlFKUaBVNUwFoFkdAhv0Nrj5sTHV9lChoBmgJaA9DCHsxlBNt9mtAlIaUUpRoFU2/AWgWR0CG/m9xIatLdX2UKGgGaAloD0MIuVFkraFFXECUhpRSlGgVTZQCaBZHQIb/M3dbgTB1fZQoaAZoCWgPQwgFjC5vjnpqQJSGlFKUaBVNmQFoFkdAhwOvttygf3V9lChoBmgJaA9DCGwldJfEb09AlIaUUpRoFU3oA2gWR0CHB+vgWJrMdX2UKGgGaAloD0MIqkNuhpsgaUCUhpRSlGgVTcIBaBZHQIcIajHn2Zl1fZQoaAZoCWgPQwjxf0dUqKBEwJSGlFKUaBVNewFoFkdAhwmosyzolnV9lChoBmgJaA9DCCRE+YIW0iDAlIaUUpRoFU2nAWgWR0CHCj8zAN5MdX2UKGgGaAloD0MIqHNFKSEgaECUhpRSlGgVTSgCaBZHQIc+7BXS0Bx1fZQoaAZoCWgPQwgRGyycJN9rQJSGlFKUaBVNlAFoFkdAh0NH/cWTHXV9lChoBmgJaA9DCC/7dac7311AlIaUUpRoFU3oA2gWR0CHSIH+IdlvdX2UKGgGaAloD0MIv2A3bFs4aECUhpRSlGgVTZ4BaBZHQIdLe0mdAgR1fZQoaAZoCWgPQwhozvqUY51nQJSGlFKUaBVNowFoFkdAh1DTNMXaanV9lChoBmgJaA9DCDy/KEF/40rAlIaUUpRoFU2gAWgWR0CHUUuaF23bdX2UKGgGaAloD0MIbOnRVE+3X0CUhpRSlGgVTegDaBZHQIdR3dRBNVR1fZQoaAZoCWgPQwjjx5i7lhlTQJSGlFKUaBVN6ANoFkdAh1IXY+Sr53V9lChoBmgJaA9DCFNcVfbdlmVAlIaUUpRoFU3oAWgWR0CHUvARChN/dX2UKGgGaAloD0MIQDTz5Bq2bUCUhpRSlGgVTcwBaBZHQIdUBoRIz311fZQoaAZoCWgPQwgP7zmwnJxlQJSGlFKUaBVN3QFoFkdAh1SnGKhtcnV9lChoBmgJaA9DCNV7Kqe9G21AlIaUUpRoFU2SAWgWR0CHWix1xKg7dX2UKGgGaAloD0MITkaVYdxFN8CUhpRSlGgVTd8BaBZHQIdayRQrMC91fZQoaAZoCWgPQwij6exk8M9oQJSGlFKUaBVNxAFoFkdAh1vfYzzmOnV9lChoBmgJaA9DCHwOLEfIGk3AlIaUUpRoFU3CAWgWR0CHXBj4HoovdX2UKGgGaAloD0MIZOjYQSXIRMCUhpRSlGgVTXMBaBZHQIdvbBfrrxB1fZQoaAZoCWgPQwibcRqiCrhpQJSGlFKUaBVNuAFoFkdAh2+PCl7+k3V9lChoBmgJaA9DCLYwC+0cVW1AlIaUUpRoFU2MAWgWR0CHfslBQemvdX2UKGgGaAloD0MIGXJsPcMjaUCUhpRSlGgVTbIBaBZHQIeAIQHzH0d1fZQoaAZoCWgPQwgewY2ULS9oQJSGlFKUaBVNwQFoFkdAh4WTAnDziHV9lChoBmgJaA9DCFCm0eTi0WZAlIaUUpRoFU3NAWgWR0CHhjXEqDsddX2UKGgGaAloD0MI9BjlmRfAZ0CUhpRSlGgVTdQBaBZHQIeG/6qKgqV1fZQoaAZoCWgPQwgQWDm0SNJqQJSGlFKUaBVNDwJoFkdAh43iqIacZ3V9lChoBmgJaA9DCPJfIAgQU2pAlIaUUpRoFU1tAmgWR0CHkC4rBj4IdX2UKGgGaAloD0MIaOp1i0ANaUCUhpRSlGgVTdoBaBZHQIeSyFdszl91fZQoaAZoCWgPQwgSiULLOpppQJSGlFKUaBVNywFoFkdAh5NbsF+uvHV9lChoBmgJaA9DCBLaci7FQmpAlIaUUpRoFU3lAWgWR0CHlHqXWvr4dX2UKGgGaAloD0MIpivYRrzaaECUhpRSlGgVTS0CaBZHQIedL9l2/zt1fZQoaAZoCWgPQwgcP1QaMYRUQJSGlFKUaBVN6ANoFkdAh54Occ2itnV9lChoBmgJaA9DCFxXzAjvSmhAlIaUUpRoFU29AWgWR0CHplkNnXd1dX2UKGgGaAloD0MICwkYXd60V0CUhpRSlGgVTegDaBZHQIeweZVn27F1fZQoaAZoCWgPQwik4v+OKEtsQJSGlFKUaBVNqwFoFkdAh7IV3MY/FHV9lChoBmgJaA9DCO/H7ZdPw2hAlIaUUpRoFU3CAWgWR0CH4GrsByS3dX2UKGgGaAloD0MIhQZi2cz1aECUhpRSlGgVTbsBaBZHQIfgrZezD4x1fZQoaAZoCWgPQwht4uR+BxRsQJSGlFKUaBVN1AFoFkdAh+MXfqHGj3V9lChoBmgJaA9DCOnX1k//YTTAlIaUUpRoFU2zAWgWR0CH5iM6RyOrdX2UKGgGaAloD0MIeCY0SawmakCUhpRSlGgVTckBaBZHQIfrGf5DZ151fZQoaAZoCWgPQwiBI4EGmwNewJSGlFKUaBVNzwNoFkdAh+uTyJ9Ao3V9lChoBmgJaA9DCEw0SMFTwGlAlIaUUpRoFU24AWgWR0CH7JA0Kqn4dX2UKGgGaAloD0MIoHB2axmpaECUhpRSlGgVTcEBaBZHQIfs3w5NoJ11fZQoaAZoCWgPQwiismFNZZk0wJSGlFKUaBVNTwFoFkdAh+0QazeGf3V9lChoBmgJaA9DCNnQzf5AimVAlIaUUpRoFU3VAWgWR0CH8EBGx2SudX2UKGgGaAloD0MIe4MvTKaxbECUhpRSlGgVTZQBaBZHQIfyZlz2exx1fZQoaAZoCWgPQwhT7Ggc6oVEwJSGlFKUaBVNKwFoFkdAiAJGapgkT3V9lChoBmgJaA9DCF+Zt+o6DktAlIaUUpRoFU3oA2gWR0CIDpDiwSrYdX2UKGgGaAloD0MIdQXbiCcqa0CUhpRSlGgVTa8BaBZHQIgSLoB7u2J1fZQoaAZoCWgPQwjlJ9U+HdctwJSGlFKUaBVNSQFoFkdAiBKwm3OObXV9lChoBmgJaA9DCMpv0clSEmtAlIaUUpRoFU3WAWgWR0CIFvdFfAsTdX2UKGgGaAloD0MIIqgavRq3aUCUhpRSlGgVTSMCaBZHQIgX8iMYMv11fZQoaAZoCWgPQwguU5PgjTxmQJSGlFKUaBVNdAJoFkdAiBh2sRxtHnV9lChoBmgJaA9DCNoaEYyD41VAlIaUUpRoFU3oA2gWR0CIG0dtEXtTdX2UKGgGaAloD0MIGejaF9DlVMCUhpRSlGgVTcQBaBZHQIggEnXumaZ1fZQoaAZoCWgPQwhBKO/jaBZOwJSGlFKUaBVNvgFoFkdAiCaXz+WGAXV9lChoBmgJaA9DCELSp1X00UHAlIaUUpRoFU3iAWgWR0CIJ+76pHZsdX2UKGgGaAloD0MIebEwRE41Z0CUhpRSlGgVTRsCaBZHQIgoQ1BMSK51fZQoaAZoCWgPQwia7+AnjvdoQJSGlFKUaBVNkAJoFkdAiC/5XuE253V9lChoBmgJaA9DCKTBbW1h3mtAlIaUUpRoFU3jAWgWR0CIO7bXYlIFdX2UKGgGaAloD0MIAmN9A5P8bUCUhpRSlGgVTdoCaBZHQIg/rzErGzd1fZQoaAZoCWgPQwhdUrXdBFlCwJSGlFKUaBVNvAFoFkdAiEGyyD7Ik3V9lChoBmgJaA9DCIwQHm0c8GlAlIaUUpRoFU3qAWgWR0CISrlrdnCgdX2UKGgGaAloD0MIY7SOqiYQV0CUhpRSlGgVTegDaBZHQIhNFfCyhSN1fZQoaAZoCWgPQwhnfcoxWVQtwJSGlFKUaBVNjAFoFkdAiE4CcG1QZXV9lChoBmgJaA9DCAHChxItF0zAlIaUUpRoFU3MAWgWR0CIT+ujASFodWUu"
73
  },
74
  "ep_success_buffer": {
75
  ":type:": "<class 'collections.deque'>",
76
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
  },
78
+ "_n_updates": 124,
79
  "n_steps": 1024,
80
+ "gamma": 0.99,
81
+ "gae_lambda": 0.9,
82
+ "ent_coef": 0.001,
83
  "vf_coef": 0.5,
84
  "max_grad_norm": 0.5,
85
  "batch_size": 64,
ppo-LunarLander-v2/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:24ba23e87ac0b19e6ec5f14ecbce4dbe7756332e2ca945da195a9ab22b84d083
3
  size 87929
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0efc0c90bc1c5de9de40ecefb244265de3334afa4886b6b300651b0f290f0a81
3
  size 87929
ppo-LunarLander-v2/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:580a6bca11bcc11e7516dcb3f06069871a4d64f800daa22e33ba68291150769b
3
  size 43201
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:166e2184e1f8c463fca253abf9ecba9157f2805c28a4b645a4bf2407b228a6d9
3
  size 43201
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": -230.45554200787447, "std_reward": 19.704153929554053, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-17T03:47:27.401842"}
 
1
+ {"mean_reward": 79.25488912088153, "std_reward": 108.92379253025231, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-17T12:18:29.915893"}