g-astruc commited on
Commit
7b97687
1 Parent(s): 954ad4c

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +16 -19
README.md CHANGED
@@ -9,28 +9,24 @@ license: mit
9
 
10
  Official models for [_AnySat: An Earth Observation Model for Any Resolutions, Scales, and Modalities_](https://arxiv.org/pdf/2404.08351.pdf)
11
 
12
- ## Abstract
13
-
14
- We introduce AnySat: a JEPA-based multimodal Earth Observation model that train simultaneously on diverse datasets with different scales, resolutions (spatial, spectral, temporal), and modality combinations.
15
-
16
 
17
- For more details and results, please check out our [github](https://github.com/gastruc/AnySat) and [project page](https://gastruc.github.io/projects/omnisat.html).
18
-
19
- ![image/png](https://cdn-uploads.huggingface.co/production/uploads/662b7fba68ed7bbf40bfb0df/2tc0cFdOF2V0_KgptA-qV.png)
20
 
21
- ## Datasets
22
 
23
-
24
- | Dataset name | Modalities | Labels | Link
25
- | ------------- | ---------------------------------------- | ------------------- | ------------------- |
26
- | PASTIS-HD | **SPOT 6-7 (1m)** + S1/S2 (30-140 / year)| Crop mapping (0.2m) | [huggingface](https://huggingface.co/datasets/IGNF/PASTIS-HD) or [zenodo](https://zenodo.org/records/10908628) |
27
- | TreeSatAI-TS | Aerial (0.2m) + **S1/S2 (10-70 / year)** | Forestry (60m) | [huggingface](https://huggingface.co/datasets/IGNF/TreeSatAI-Time-Series) |
28
- | FLAIR | aerial (0.2m) + S2 (20-114 / year) | Land cover (0.2m) | [huggingface](https://huggingface.co/datasets/IGNF/FLAIR) |
29
 
30
 
31
- <p align="center">
32
- <img src="https://github.com/user-attachments/assets/18acbb19-6c90-4c9a-be05-0af24ded2052" width="800" height="400">
33
- </p>
 
 
 
34
 
35
  ### Inference 🔥
36
 
@@ -58,11 +54,12 @@ To get features from an observation of a batch of observations, you need to prov
58
 
59
  Time series keys require a "{key}_dates" (for example "s2_dates") tensor of size BxT that value an integer that represent the day of the year.
60
  Then you have to choose at which scale you want te produce features. Scale argument is in meters and represent the size of the desired patch size.
61
- Outputs will be composed of the concatenation of a class token and a flattened feature map where each feature encodes a scale x scale zone
 
62
  Then, you can run:
63
 
64
  ```python
65
- features = AnySat(data, scale=scale) #
66
  ```
67
 
68
  And then you can apply those features to the desired downstream task!
 
9
 
10
  Official models for [_AnySat: An Earth Observation Model for Any Resolutions, Scales, and Modalities_](https://arxiv.org/pdf/2404.08351.pdf)
11
 
 
 
 
 
12
 
13
+ <p align="center">
14
+ <img src="https://cdn-uploads.huggingface.co/production/uploads/662b7fba68ed7bbf40bfb0df/Jh9eOnMePFiL84TOzhe86.png" alt="image/png" width="600" height="300">
15
+ </p>
16
 
17
+ ## Abstract
18
 
19
+ <div style="display: flex; align-items: center;">
20
+ <div style="flex: 1;">
21
+ <p>We introduce AnySat: a JEPA-based multimodal Earth Observation model that train simultaneously on diverse datasets with different scales, resolutions (spatial, spectral, temporal), and modality combinations.
 
 
 
22
 
23
 
24
+ For more details and results, please check out our [github](https://github.com/gastruc/AnySat) and [project page](https://gastruc.github.io/projects/omnisat.html).</p>
25
+ </div>
26
+ <div style="flex: 1; display: flex; justify-content: center;">
27
+ <img src="https://cdn-uploads.huggingface.co/production/uploads/662b7fba68ed7bbf40bfb0df/2tc0cFdOF2V0_KgptA-qV.png" alt="image/png" width="400"/>
28
+ </div>
29
+ </div>
30
 
31
  ### Inference 🔥
32
 
 
54
 
55
  Time series keys require a "{key}_dates" (for example "s2_dates") tensor of size BxT that value an integer that represent the day of the year.
56
  Then you have to choose at which scale you want te produce features. Scale argument is in meters and represent the size of the desired patch size.
57
+ Outputs will be composed of the concatenation of a class token and a flattened feature map where each feature encodes a scale x scale zone.
58
+ Scale should divide the spatial cover of all modalities and be a multiple of 10.
59
  Then, you can run:
60
 
61
  ```python
62
+ features = AnySat(data, scale=scale) #where scale is the size in meters of patches
63
  ```
64
 
65
  And then you can apply those features to the desired downstream task!