End of training
Browse files
README.md
CHANGED
@@ -20,12 +20,12 @@ should probably proofread and complete it, then remove this comment. -->
|
|
20 |
|
21 |
This model is a fine-tuned version of [asapp/sew-d-tiny-100k-ft-ls100h](https://huggingface.co/asapp/sew-d-tiny-100k-ft-ls100h) on an unknown dataset.
|
22 |
It achieves the following results on the evaluation set:
|
23 |
-
- Loss: 1.
|
24 |
-
- Accuracy: 0.
|
25 |
-
- Precision: 0.
|
26 |
-
- Recall: 0.
|
27 |
-
- F1: 0.
|
28 |
-
- Binary: 0.
|
29 |
|
30 |
## Model description
|
31 |
|
@@ -59,48 +59,58 @@ The following hyperparameters were used during training:
|
|
59 |
|
60 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Binary |
|
61 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:------:|
|
62 |
-
| No log | 0.19 | 50 | 4.
|
63 |
-
| No log | 0.38 | 100 | 4.
|
64 |
-
| No log | 0.58 | 150 | 3.
|
65 |
-
| No log | 0.77 | 200 | 3.
|
66 |
-
| No log | 0.96 | 250 | 3.
|
67 |
-
| 4.
|
68 |
-
| 4.
|
69 |
-
| 4.
|
70 |
-
| 4.
|
71 |
-
| 4.
|
72 |
-
| 3.
|
73 |
-
| 3.
|
74 |
-
| 3.
|
75 |
-
| 3.
|
76 |
-
| 3.
|
77 |
-
| 2.
|
78 |
-
| 2.
|
79 |
-
| 2.
|
80 |
-
| 2.
|
81 |
-
| 2.
|
82 |
-
| 2.
|
83 |
-
| 2.
|
84 |
-
| 2.
|
85 |
-
| 2.
|
86 |
-
| 2.
|
87 |
-
| 2.
|
88 |
-
| 2.
|
89 |
-
| 2.
|
90 |
-
| 2.
|
91 |
-
| 2.
|
92 |
-
| 2.
|
93 |
-
| 2.
|
94 |
-
| 2.
|
95 |
-
| 2.
|
96 |
-
| 2.
|
97 |
-
| 2.
|
98 |
-
| 2.
|
99 |
-
| 2.
|
100 |
-
| 2.
|
101 |
-
| 2.
|
102 |
-
| 2.
|
103 |
-
| 2.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
|
105 |
|
106 |
### Framework versions
|
|
|
20 |
|
21 |
This model is a fine-tuned version of [asapp/sew-d-tiny-100k-ft-ls100h](https://huggingface.co/asapp/sew-d-tiny-100k-ft-ls100h) on an unknown dataset.
|
22 |
It achieves the following results on the evaluation set:
|
23 |
+
- Loss: 1.3895
|
24 |
+
- Accuracy: 0.6280
|
25 |
+
- Precision: 0.6286
|
26 |
+
- Recall: 0.6280
|
27 |
+
- F1: 0.5911
|
28 |
+
- Binary: 0.7407
|
29 |
|
30 |
## Model description
|
31 |
|
|
|
59 |
|
60 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Binary |
|
61 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:------:|
|
62 |
+
| No log | 0.19 | 50 | 4.3686 | 0.0431 | 0.0158 | 0.0431 | 0.0125 | 0.2191 |
|
63 |
+
| No log | 0.38 | 100 | 4.1099 | 0.0512 | 0.0096 | 0.0512 | 0.0109 | 0.2987 |
|
64 |
+
| No log | 0.58 | 150 | 3.8483 | 0.0674 | 0.0273 | 0.0674 | 0.0229 | 0.3337 |
|
65 |
+
| No log | 0.77 | 200 | 3.6126 | 0.0809 | 0.0229 | 0.0809 | 0.0292 | 0.3544 |
|
66 |
+
| No log | 0.96 | 250 | 3.4229 | 0.1348 | 0.0686 | 0.1348 | 0.0691 | 0.3911 |
|
67 |
+
| 4.077 | 1.15 | 300 | 3.2957 | 0.1698 | 0.0840 | 0.1698 | 0.0859 | 0.4183 |
|
68 |
+
| 4.077 | 1.34 | 350 | 3.1928 | 0.2156 | 0.1085 | 0.2156 | 0.1245 | 0.4469 |
|
69 |
+
| 4.077 | 1.53 | 400 | 3.0884 | 0.2075 | 0.0961 | 0.2075 | 0.1141 | 0.4420 |
|
70 |
+
| 4.077 | 1.73 | 450 | 2.9780 | 0.2534 | 0.1994 | 0.2534 | 0.1676 | 0.4757 |
|
71 |
+
| 4.077 | 1.92 | 500 | 2.8808 | 0.2884 | 0.2057 | 0.2884 | 0.1981 | 0.4987 |
|
72 |
+
| 3.3556 | 2.11 | 550 | 2.7864 | 0.3100 | 0.2164 | 0.3100 | 0.2170 | 0.5156 |
|
73 |
+
| 3.3556 | 2.3 | 600 | 2.7081 | 0.3369 | 0.2348 | 0.3369 | 0.2450 | 0.5361 |
|
74 |
+
| 3.3556 | 2.49 | 650 | 2.6018 | 0.3423 | 0.2305 | 0.3423 | 0.2548 | 0.5391 |
|
75 |
+
| 3.3556 | 2.68 | 700 | 2.5388 | 0.3531 | 0.2630 | 0.3531 | 0.2644 | 0.5458 |
|
76 |
+
| 3.3556 | 2.88 | 750 | 2.4501 | 0.3558 | 0.2640 | 0.3558 | 0.2726 | 0.5493 |
|
77 |
+
| 2.9854 | 3.07 | 800 | 2.3623 | 0.4232 | 0.3298 | 0.4232 | 0.3373 | 0.5965 |
|
78 |
+
| 2.9854 | 3.26 | 850 | 2.2990 | 0.4232 | 0.3592 | 0.4232 | 0.3469 | 0.5951 |
|
79 |
+
| 2.9854 | 3.45 | 900 | 2.2174 | 0.4259 | 0.3381 | 0.4259 | 0.3490 | 0.5992 |
|
80 |
+
| 2.9854 | 3.64 | 950 | 2.1462 | 0.4555 | 0.3967 | 0.4555 | 0.3844 | 0.6199 |
|
81 |
+
| 2.9854 | 3.84 | 1000 | 2.0908 | 0.4447 | 0.3910 | 0.4447 | 0.3737 | 0.6102 |
|
82 |
+
| 2.6945 | 4.03 | 1050 | 2.0397 | 0.4528 | 0.3873 | 0.4528 | 0.3762 | 0.6191 |
|
83 |
+
| 2.6945 | 4.22 | 1100 | 1.9789 | 0.4906 | 0.4262 | 0.4906 | 0.4216 | 0.6445 |
|
84 |
+
| 2.6945 | 4.41 | 1150 | 1.9196 | 0.5229 | 0.4729 | 0.5229 | 0.4613 | 0.6671 |
|
85 |
+
| 2.6945 | 4.6 | 1200 | 1.8807 | 0.4960 | 0.4391 | 0.4960 | 0.4328 | 0.6493 |
|
86 |
+
| 2.6945 | 4.79 | 1250 | 1.8297 | 0.5175 | 0.4665 | 0.5175 | 0.4584 | 0.6633 |
|
87 |
+
| 2.6945 | 4.99 | 1300 | 1.8099 | 0.5175 | 0.4805 | 0.5175 | 0.4550 | 0.6633 |
|
88 |
+
| 2.4977 | 5.18 | 1350 | 1.7638 | 0.5283 | 0.4954 | 0.5283 | 0.4687 | 0.6709 |
|
89 |
+
| 2.4977 | 5.37 | 1400 | 1.7227 | 0.5283 | 0.4549 | 0.5283 | 0.4608 | 0.6701 |
|
90 |
+
| 2.4977 | 5.56 | 1450 | 1.6999 | 0.5472 | 0.5024 | 0.5472 | 0.4867 | 0.6833 |
|
91 |
+
| 2.4977 | 5.75 | 1500 | 1.6623 | 0.5445 | 0.5207 | 0.5445 | 0.4919 | 0.6822 |
|
92 |
+
| 2.4977 | 5.94 | 1550 | 1.6480 | 0.5499 | 0.5186 | 0.5499 | 0.4999 | 0.6860 |
|
93 |
+
| 2.3471 | 6.14 | 1600 | 1.6190 | 0.5714 | 0.5378 | 0.5714 | 0.5109 | 0.7011 |
|
94 |
+
| 2.3471 | 6.33 | 1650 | 1.6022 | 0.5687 | 0.5654 | 0.5687 | 0.5189 | 0.6992 |
|
95 |
+
| 2.3471 | 6.52 | 1700 | 1.5881 | 0.5660 | 0.5306 | 0.5660 | 0.5074 | 0.6973 |
|
96 |
+
| 2.3471 | 6.71 | 1750 | 1.5415 | 0.5795 | 0.5517 | 0.5795 | 0.5317 | 0.7067 |
|
97 |
+
| 2.3471 | 6.9 | 1800 | 1.5210 | 0.5849 | 0.5541 | 0.5849 | 0.5374 | 0.7105 |
|
98 |
+
| 2.2349 | 7.09 | 1850 | 1.4996 | 0.5984 | 0.5568 | 0.5984 | 0.5449 | 0.7199 |
|
99 |
+
| 2.2349 | 7.29 | 1900 | 1.4846 | 0.6065 | 0.6233 | 0.6065 | 0.5622 | 0.7256 |
|
100 |
+
| 2.2349 | 7.48 | 1950 | 1.4720 | 0.6065 | 0.6128 | 0.6065 | 0.5698 | 0.7256 |
|
101 |
+
| 2.2349 | 7.67 | 2000 | 1.4549 | 0.6011 | 0.6045 | 0.6011 | 0.5640 | 0.7218 |
|
102 |
+
| 2.2349 | 7.86 | 2050 | 1.4355 | 0.6307 | 0.6331 | 0.6307 | 0.5889 | 0.7426 |
|
103 |
+
| 2.1754 | 8.05 | 2100 | 1.4426 | 0.6119 | 0.6166 | 0.6119 | 0.5702 | 0.7294 |
|
104 |
+
| 2.1754 | 8.25 | 2150 | 1.4291 | 0.6226 | 0.6097 | 0.6226 | 0.5830 | 0.7369 |
|
105 |
+
| 2.1754 | 8.44 | 2200 | 1.4291 | 0.6119 | 0.6037 | 0.6119 | 0.5696 | 0.7294 |
|
106 |
+
| 2.1754 | 8.63 | 2250 | 1.4069 | 0.6307 | 0.6166 | 0.6307 | 0.5888 | 0.7426 |
|
107 |
+
| 2.1754 | 8.82 | 2300 | 1.4038 | 0.6199 | 0.6132 | 0.6199 | 0.5793 | 0.7350 |
|
108 |
+
| 2.138 | 9.01 | 2350 | 1.4045 | 0.6253 | 0.6265 | 0.6253 | 0.5848 | 0.7388 |
|
109 |
+
| 2.138 | 9.2 | 2400 | 1.4043 | 0.6226 | 0.6060 | 0.6226 | 0.5833 | 0.7369 |
|
110 |
+
| 2.138 | 9.4 | 2450 | 1.3902 | 0.6253 | 0.6109 | 0.6253 | 0.5846 | 0.7388 |
|
111 |
+
| 2.138 | 9.59 | 2500 | 1.3906 | 0.6253 | 0.6125 | 0.6253 | 0.5849 | 0.7388 |
|
112 |
+
| 2.138 | 9.78 | 2550 | 1.3915 | 0.6226 | 0.6075 | 0.6226 | 0.5838 | 0.7369 |
|
113 |
+
| 2.138 | 9.97 | 2600 | 1.3895 | 0.6280 | 0.6286 | 0.6280 | 0.5911 | 0.7407 |
|
114 |
|
115 |
|
116 |
### Framework versions
|
runs/Jul13_14-51-02_LAPTOP-1GID9RGH/events.out.tfevents.1720857063.LAPTOP-1GID9RGH.18012.0
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e200554943463b55353f1dca3f02fa6a4233c48edceccc3ed2128e905e9930c4
|
3 |
+
size 38975
|