|
from transformers import PretrainedConfig |
|
|
|
|
|
class MELPEncoderConfig(PretrainedConfig): |
|
model_type = "melp" |
|
|
|
def __init__( |
|
self, |
|
model_size: str = "small", |
|
shared_emb_dim: int = 256, |
|
embed_dim_caption: int = 768, |
|
use_attentional_pool_contrast: bool = True, |
|
use_attentional_pool_caption: bool = True, |
|
n_queries_contrast: int = 14, |
|
n_queries_caption: int = 128, |
|
attn_pooler_heads: int = 8, |
|
proj: str = "linear", |
|
drop: float = 0., |
|
proj_bias: bool = False, |
|
num_leads: int = 12, |
|
**kwargs |
|
): |
|
self.model_size = model_size |
|
self.shared_emb_dim = shared_emb_dim |
|
self.embed_dim_caption = embed_dim_caption |
|
self.use_attentional_pool_contrast = use_attentional_pool_contrast |
|
self.use_attentional_pool_caption = use_attentional_pool_caption |
|
self.n_queries_contrast = n_queries_contrast |
|
self.n_queries_caption = n_queries_caption |
|
self.attn_pooler_heads = attn_pooler_heads |
|
self.proj = proj |
|
self.drop = drop |
|
self.proj_bias = proj_bias |
|
self.num_leads = num_leads |
|
super().__init__(**kwargs) |
|
|