Create modeling_vae.py
Browse files- modeling_vae.py +858 -0
modeling_vae.py
ADDED
@@ -0,0 +1,858 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# pytorch_diffusion + derived encoder decoder
|
2 |
+
import math
|
3 |
+
|
4 |
+
import numpy as np
|
5 |
+
import tqdm
|
6 |
+
import torch
|
7 |
+
import torch.nn as nn
|
8 |
+
|
9 |
+
from diffusers import DiffusionPipeline
|
10 |
+
from diffusers.configuration_utils import ConfigMixin
|
11 |
+
from diffusers.modeling_utils import ModelMixin
|
12 |
+
|
13 |
+
|
14 |
+
def get_timestep_embedding(timesteps, embedding_dim):
|
15 |
+
"""
|
16 |
+
This matches the implementation in Denoising Diffusion Probabilistic Models:
|
17 |
+
From Fairseq.
|
18 |
+
Build sinusoidal embeddings.
|
19 |
+
This matches the implementation in tensor2tensor, but differs slightly
|
20 |
+
from the description in Section 3.5 of "Attention Is All You Need".
|
21 |
+
"""
|
22 |
+
assert len(timesteps.shape) == 1
|
23 |
+
|
24 |
+
half_dim = embedding_dim // 2
|
25 |
+
emb = math.log(10000) / (half_dim - 1)
|
26 |
+
emb = torch.exp(torch.arange(half_dim, dtype=torch.float32) * -emb)
|
27 |
+
emb = emb.to(device=timesteps.device)
|
28 |
+
emb = timesteps.float()[:, None] * emb[None, :]
|
29 |
+
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
|
30 |
+
if embedding_dim % 2 == 1: # zero pad
|
31 |
+
emb = torch.nn.functional.pad(emb, (0, 1, 0, 0))
|
32 |
+
return emb
|
33 |
+
|
34 |
+
|
35 |
+
def nonlinearity(x):
|
36 |
+
# swish
|
37 |
+
return x * torch.sigmoid(x)
|
38 |
+
|
39 |
+
|
40 |
+
def Normalize(in_channels):
|
41 |
+
return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
|
42 |
+
|
43 |
+
|
44 |
+
class Upsample(nn.Module):
|
45 |
+
def __init__(self, in_channels, with_conv):
|
46 |
+
super().__init__()
|
47 |
+
self.with_conv = with_conv
|
48 |
+
if self.with_conv:
|
49 |
+
self.conv = torch.nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1)
|
50 |
+
|
51 |
+
def forward(self, x):
|
52 |
+
x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest")
|
53 |
+
if self.with_conv:
|
54 |
+
x = self.conv(x)
|
55 |
+
return x
|
56 |
+
|
57 |
+
|
58 |
+
class Downsample(nn.Module):
|
59 |
+
def __init__(self, in_channels, with_conv):
|
60 |
+
super().__init__()
|
61 |
+
self.with_conv = with_conv
|
62 |
+
if self.with_conv:
|
63 |
+
# no asymmetric padding in torch conv, must do it ourselves
|
64 |
+
self.conv = torch.nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=2, padding=0)
|
65 |
+
|
66 |
+
def forward(self, x):
|
67 |
+
if self.with_conv:
|
68 |
+
pad = (0, 1, 0, 1)
|
69 |
+
x = torch.nn.functional.pad(x, pad, mode="constant", value=0)
|
70 |
+
x = self.conv(x)
|
71 |
+
else:
|
72 |
+
x = torch.nn.functional.avg_pool2d(x, kernel_size=2, stride=2)
|
73 |
+
return x
|
74 |
+
|
75 |
+
|
76 |
+
class ResnetBlock(nn.Module):
|
77 |
+
def __init__(self, *, in_channels, out_channels=None, conv_shortcut=False, dropout, temb_channels=512):
|
78 |
+
super().__init__()
|
79 |
+
self.in_channels = in_channels
|
80 |
+
out_channels = in_channels if out_channels is None else out_channels
|
81 |
+
self.out_channels = out_channels
|
82 |
+
self.use_conv_shortcut = conv_shortcut
|
83 |
+
|
84 |
+
self.norm1 = Normalize(in_channels)
|
85 |
+
self.conv1 = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
|
86 |
+
if temb_channels > 0:
|
87 |
+
self.temb_proj = torch.nn.Linear(temb_channels, out_channels)
|
88 |
+
self.norm2 = Normalize(out_channels)
|
89 |
+
self.dropout = torch.nn.Dropout(dropout)
|
90 |
+
self.conv2 = torch.nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1)
|
91 |
+
if self.in_channels != self.out_channels:
|
92 |
+
if self.use_conv_shortcut:
|
93 |
+
self.conv_shortcut = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
|
94 |
+
else:
|
95 |
+
self.nin_shortcut = torch.nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0)
|
96 |
+
|
97 |
+
def forward(self, x, temb):
|
98 |
+
h = x
|
99 |
+
h = self.norm1(h)
|
100 |
+
h = nonlinearity(h)
|
101 |
+
h = self.conv1(h)
|
102 |
+
|
103 |
+
if temb is not None:
|
104 |
+
h = h + self.temb_proj(nonlinearity(temb))[:, :, None, None]
|
105 |
+
|
106 |
+
h = self.norm2(h)
|
107 |
+
h = nonlinearity(h)
|
108 |
+
h = self.dropout(h)
|
109 |
+
h = self.conv2(h)
|
110 |
+
|
111 |
+
if self.in_channels != self.out_channels:
|
112 |
+
if self.use_conv_shortcut:
|
113 |
+
x = self.conv_shortcut(x)
|
114 |
+
else:
|
115 |
+
x = self.nin_shortcut(x)
|
116 |
+
|
117 |
+
return x + h
|
118 |
+
|
119 |
+
|
120 |
+
class AttnBlock(nn.Module):
|
121 |
+
def __init__(self, in_channels):
|
122 |
+
super().__init__()
|
123 |
+
self.in_channels = in_channels
|
124 |
+
|
125 |
+
self.norm = Normalize(in_channels)
|
126 |
+
self.q = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
|
127 |
+
self.k = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
|
128 |
+
self.v = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
|
129 |
+
self.proj_out = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
|
130 |
+
|
131 |
+
def forward(self, x):
|
132 |
+
h_ = x
|
133 |
+
h_ = self.norm(h_)
|
134 |
+
q = self.q(h_)
|
135 |
+
k = self.k(h_)
|
136 |
+
v = self.v(h_)
|
137 |
+
|
138 |
+
# compute attention
|
139 |
+
b, c, h, w = q.shape
|
140 |
+
q = q.reshape(b, c, h * w)
|
141 |
+
q = q.permute(0, 2, 1) # b,hw,c
|
142 |
+
k = k.reshape(b, c, h * w) # b,c,hw
|
143 |
+
w_ = torch.bmm(q, k) # b,hw,hw w[b,i,j]=sum_c q[b,i,c]k[b,c,j]
|
144 |
+
w_ = w_ * (int(c) ** (-0.5))
|
145 |
+
w_ = torch.nn.functional.softmax(w_, dim=2)
|
146 |
+
|
147 |
+
# attend to values
|
148 |
+
v = v.reshape(b, c, h * w)
|
149 |
+
w_ = w_.permute(0, 2, 1) # b,hw,hw (first hw of k, second of q)
|
150 |
+
h_ = torch.bmm(v, w_) # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j]
|
151 |
+
h_ = h_.reshape(b, c, h, w)
|
152 |
+
|
153 |
+
h_ = self.proj_out(h_)
|
154 |
+
|
155 |
+
return x + h_
|
156 |
+
|
157 |
+
|
158 |
+
class Model(nn.Module):
|
159 |
+
def __init__(
|
160 |
+
self,
|
161 |
+
*,
|
162 |
+
ch,
|
163 |
+
out_ch,
|
164 |
+
ch_mult=(1, 2, 4, 8),
|
165 |
+
num_res_blocks,
|
166 |
+
attn_resolutions,
|
167 |
+
dropout=0.0,
|
168 |
+
resamp_with_conv=True,
|
169 |
+
in_channels,
|
170 |
+
resolution,
|
171 |
+
use_timestep=True,
|
172 |
+
):
|
173 |
+
super().__init__()
|
174 |
+
self.ch = ch
|
175 |
+
self.temb_ch = self.ch * 4
|
176 |
+
self.num_resolutions = len(ch_mult)
|
177 |
+
self.num_res_blocks = num_res_blocks
|
178 |
+
self.resolution = resolution
|
179 |
+
self.in_channels = in_channels
|
180 |
+
|
181 |
+
self.use_timestep = use_timestep
|
182 |
+
if self.use_timestep:
|
183 |
+
# timestep embedding
|
184 |
+
self.temb = nn.Module()
|
185 |
+
self.temb.dense = nn.ModuleList(
|
186 |
+
[
|
187 |
+
torch.nn.Linear(self.ch, self.temb_ch),
|
188 |
+
torch.nn.Linear(self.temb_ch, self.temb_ch),
|
189 |
+
]
|
190 |
+
)
|
191 |
+
|
192 |
+
# downsampling
|
193 |
+
self.conv_in = torch.nn.Conv2d(in_channels, self.ch, kernel_size=3, stride=1, padding=1)
|
194 |
+
|
195 |
+
curr_res = resolution
|
196 |
+
in_ch_mult = (1,) + tuple(ch_mult)
|
197 |
+
self.down = nn.ModuleList()
|
198 |
+
for i_level in range(self.num_resolutions):
|
199 |
+
block = nn.ModuleList()
|
200 |
+
attn = nn.ModuleList()
|
201 |
+
block_in = ch * in_ch_mult[i_level]
|
202 |
+
block_out = ch * ch_mult[i_level]
|
203 |
+
for i_block in range(self.num_res_blocks):
|
204 |
+
block.append(
|
205 |
+
ResnetBlock(
|
206 |
+
in_channels=block_in, out_channels=block_out, temb_channels=self.temb_ch, dropout=dropout
|
207 |
+
)
|
208 |
+
)
|
209 |
+
block_in = block_out
|
210 |
+
if curr_res in attn_resolutions:
|
211 |
+
attn.append(AttnBlock(block_in))
|
212 |
+
down = nn.Module()
|
213 |
+
down.block = block
|
214 |
+
down.attn = attn
|
215 |
+
if i_level != self.num_resolutions - 1:
|
216 |
+
down.downsample = Downsample(block_in, resamp_with_conv)
|
217 |
+
curr_res = curr_res // 2
|
218 |
+
self.down.append(down)
|
219 |
+
|
220 |
+
# middle
|
221 |
+
self.mid = nn.Module()
|
222 |
+
self.mid.block_1 = ResnetBlock(
|
223 |
+
in_channels=block_in, out_channels=block_in, temb_channels=self.temb_ch, dropout=dropout
|
224 |
+
)
|
225 |
+
self.mid.attn_1 = AttnBlock(block_in)
|
226 |
+
self.mid.block_2 = ResnetBlock(
|
227 |
+
in_channels=block_in, out_channels=block_in, temb_channels=self.temb_ch, dropout=dropout
|
228 |
+
)
|
229 |
+
|
230 |
+
# upsampling
|
231 |
+
self.up = nn.ModuleList()
|
232 |
+
for i_level in reversed(range(self.num_resolutions)):
|
233 |
+
block = nn.ModuleList()
|
234 |
+
attn = nn.ModuleList()
|
235 |
+
block_out = ch * ch_mult[i_level]
|
236 |
+
skip_in = ch * ch_mult[i_level]
|
237 |
+
for i_block in range(self.num_res_blocks + 1):
|
238 |
+
if i_block == self.num_res_blocks:
|
239 |
+
skip_in = ch * in_ch_mult[i_level]
|
240 |
+
block.append(
|
241 |
+
ResnetBlock(
|
242 |
+
in_channels=block_in + skip_in,
|
243 |
+
out_channels=block_out,
|
244 |
+
temb_channels=self.temb_ch,
|
245 |
+
dropout=dropout,
|
246 |
+
)
|
247 |
+
)
|
248 |
+
block_in = block_out
|
249 |
+
if curr_res in attn_resolutions:
|
250 |
+
attn.append(AttnBlock(block_in))
|
251 |
+
up = nn.Module()
|
252 |
+
up.block = block
|
253 |
+
up.attn = attn
|
254 |
+
if i_level != 0:
|
255 |
+
up.upsample = Upsample(block_in, resamp_with_conv)
|
256 |
+
curr_res = curr_res * 2
|
257 |
+
self.up.insert(0, up) # prepend to get consistent order
|
258 |
+
|
259 |
+
# end
|
260 |
+
self.norm_out = Normalize(block_in)
|
261 |
+
self.conv_out = torch.nn.Conv2d(block_in, out_ch, kernel_size=3, stride=1, padding=1)
|
262 |
+
|
263 |
+
def forward(self, x, t=None):
|
264 |
+
# assert x.shape[2] == x.shape[3] == self.resolution
|
265 |
+
|
266 |
+
if self.use_timestep:
|
267 |
+
# timestep embedding
|
268 |
+
assert t is not None
|
269 |
+
temb = get_timestep_embedding(t, self.ch)
|
270 |
+
temb = self.temb.dense[0](temb)
|
271 |
+
temb = nonlinearity(temb)
|
272 |
+
temb = self.temb.dense[1](temb)
|
273 |
+
else:
|
274 |
+
temb = None
|
275 |
+
|
276 |
+
# downsampling
|
277 |
+
hs = [self.conv_in(x)]
|
278 |
+
for i_level in range(self.num_resolutions):
|
279 |
+
for i_block in range(self.num_res_blocks):
|
280 |
+
h = self.down[i_level].block[i_block](hs[-1], temb)
|
281 |
+
if len(self.down[i_level].attn) > 0:
|
282 |
+
h = self.down[i_level].attn[i_block](h)
|
283 |
+
hs.append(h)
|
284 |
+
if i_level != self.num_resolutions - 1:
|
285 |
+
hs.append(self.down[i_level].downsample(hs[-1]))
|
286 |
+
|
287 |
+
# middle
|
288 |
+
h = hs[-1]
|
289 |
+
h = self.mid.block_1(h, temb)
|
290 |
+
h = self.mid.attn_1(h)
|
291 |
+
h = self.mid.block_2(h, temb)
|
292 |
+
|
293 |
+
# upsampling
|
294 |
+
for i_level in reversed(range(self.num_resolutions)):
|
295 |
+
for i_block in range(self.num_res_blocks + 1):
|
296 |
+
h = self.up[i_level].block[i_block](torch.cat([h, hs.pop()], dim=1), temb)
|
297 |
+
if len(self.up[i_level].attn) > 0:
|
298 |
+
h = self.up[i_level].attn[i_block](h)
|
299 |
+
if i_level != 0:
|
300 |
+
h = self.up[i_level].upsample(h)
|
301 |
+
|
302 |
+
# end
|
303 |
+
h = self.norm_out(h)
|
304 |
+
h = nonlinearity(h)
|
305 |
+
h = self.conv_out(h)
|
306 |
+
return h
|
307 |
+
|
308 |
+
|
309 |
+
class Encoder(nn.Module):
|
310 |
+
def __init__(
|
311 |
+
self,
|
312 |
+
*,
|
313 |
+
ch,
|
314 |
+
out_ch,
|
315 |
+
ch_mult=(1, 2, 4, 8),
|
316 |
+
num_res_blocks,
|
317 |
+
attn_resolutions,
|
318 |
+
dropout=0.0,
|
319 |
+
resamp_with_conv=True,
|
320 |
+
in_channels,
|
321 |
+
resolution,
|
322 |
+
z_channels,
|
323 |
+
double_z=True,
|
324 |
+
**ignore_kwargs,
|
325 |
+
):
|
326 |
+
super().__init__()
|
327 |
+
self.ch = ch
|
328 |
+
self.temb_ch = 0
|
329 |
+
self.num_resolutions = len(ch_mult)
|
330 |
+
self.num_res_blocks = num_res_blocks
|
331 |
+
self.resolution = resolution
|
332 |
+
self.in_channels = in_channels
|
333 |
+
|
334 |
+
# downsampling
|
335 |
+
self.conv_in = torch.nn.Conv2d(in_channels, self.ch, kernel_size=3, stride=1, padding=1)
|
336 |
+
|
337 |
+
curr_res = resolution
|
338 |
+
in_ch_mult = (1,) + tuple(ch_mult)
|
339 |
+
self.down = nn.ModuleList()
|
340 |
+
for i_level in range(self.num_resolutions):
|
341 |
+
block = nn.ModuleList()
|
342 |
+
attn = nn.ModuleList()
|
343 |
+
block_in = ch * in_ch_mult[i_level]
|
344 |
+
block_out = ch * ch_mult[i_level]
|
345 |
+
for i_block in range(self.num_res_blocks):
|
346 |
+
block.append(
|
347 |
+
ResnetBlock(
|
348 |
+
in_channels=block_in, out_channels=block_out, temb_channels=self.temb_ch, dropout=dropout
|
349 |
+
)
|
350 |
+
)
|
351 |
+
block_in = block_out
|
352 |
+
if curr_res in attn_resolutions:
|
353 |
+
attn.append(AttnBlock(block_in))
|
354 |
+
down = nn.Module()
|
355 |
+
down.block = block
|
356 |
+
down.attn = attn
|
357 |
+
if i_level != self.num_resolutions - 1:
|
358 |
+
down.downsample = Downsample(block_in, resamp_with_conv)
|
359 |
+
curr_res = curr_res // 2
|
360 |
+
self.down.append(down)
|
361 |
+
|
362 |
+
# middle
|
363 |
+
self.mid = nn.Module()
|
364 |
+
self.mid.block_1 = ResnetBlock(
|
365 |
+
in_channels=block_in, out_channels=block_in, temb_channels=self.temb_ch, dropout=dropout
|
366 |
+
)
|
367 |
+
self.mid.attn_1 = AttnBlock(block_in)
|
368 |
+
self.mid.block_2 = ResnetBlock(
|
369 |
+
in_channels=block_in, out_channels=block_in, temb_channels=self.temb_ch, dropout=dropout
|
370 |
+
)
|
371 |
+
|
372 |
+
# end
|
373 |
+
self.norm_out = Normalize(block_in)
|
374 |
+
self.conv_out = torch.nn.Conv2d(
|
375 |
+
block_in, 2 * z_channels if double_z else z_channels, kernel_size=3, stride=1, padding=1
|
376 |
+
)
|
377 |
+
|
378 |
+
def forward(self, x):
|
379 |
+
# assert x.shape[2] == x.shape[3] == self.resolution, "{}, {}, {}".format(x.shape[2], x.shape[3], self.resolution)
|
380 |
+
|
381 |
+
# timestep embedding
|
382 |
+
temb = None
|
383 |
+
|
384 |
+
# downsampling
|
385 |
+
hs = [self.conv_in(x)]
|
386 |
+
for i_level in range(self.num_resolutions):
|
387 |
+
for i_block in range(self.num_res_blocks):
|
388 |
+
h = self.down[i_level].block[i_block](hs[-1], temb)
|
389 |
+
if len(self.down[i_level].attn) > 0:
|
390 |
+
h = self.down[i_level].attn[i_block](h)
|
391 |
+
hs.append(h)
|
392 |
+
if i_level != self.num_resolutions - 1:
|
393 |
+
hs.append(self.down[i_level].downsample(hs[-1]))
|
394 |
+
|
395 |
+
# middle
|
396 |
+
h = hs[-1]
|
397 |
+
h = self.mid.block_1(h, temb)
|
398 |
+
h = self.mid.attn_1(h)
|
399 |
+
h = self.mid.block_2(h, temb)
|
400 |
+
|
401 |
+
# end
|
402 |
+
h = self.norm_out(h)
|
403 |
+
h = nonlinearity(h)
|
404 |
+
h = self.conv_out(h)
|
405 |
+
return h
|
406 |
+
|
407 |
+
|
408 |
+
class Decoder(nn.Module):
|
409 |
+
def __init__(
|
410 |
+
self,
|
411 |
+
*,
|
412 |
+
ch,
|
413 |
+
out_ch,
|
414 |
+
ch_mult=(1, 2, 4, 8),
|
415 |
+
num_res_blocks,
|
416 |
+
attn_resolutions,
|
417 |
+
dropout=0.0,
|
418 |
+
resamp_with_conv=True,
|
419 |
+
in_channels,
|
420 |
+
resolution,
|
421 |
+
z_channels,
|
422 |
+
give_pre_end=False,
|
423 |
+
**ignorekwargs,
|
424 |
+
):
|
425 |
+
super().__init__()
|
426 |
+
self.ch = ch
|
427 |
+
self.temb_ch = 0
|
428 |
+
self.num_resolutions = len(ch_mult)
|
429 |
+
self.num_res_blocks = num_res_blocks
|
430 |
+
self.resolution = resolution
|
431 |
+
self.in_channels = in_channels
|
432 |
+
self.give_pre_end = give_pre_end
|
433 |
+
|
434 |
+
# compute in_ch_mult, block_in and curr_res at lowest res
|
435 |
+
in_ch_mult = (1,) + tuple(ch_mult)
|
436 |
+
block_in = ch * ch_mult[self.num_resolutions - 1]
|
437 |
+
curr_res = resolution // 2 ** (self.num_resolutions - 1)
|
438 |
+
self.z_shape = (1, z_channels, curr_res, curr_res)
|
439 |
+
print("Working with z of shape {} = {} dimensions.".format(self.z_shape, np.prod(self.z_shape)))
|
440 |
+
|
441 |
+
# z to block_in
|
442 |
+
self.conv_in = torch.nn.Conv2d(z_channels, block_in, kernel_size=3, stride=1, padding=1)
|
443 |
+
|
444 |
+
# middle
|
445 |
+
self.mid = nn.Module()
|
446 |
+
self.mid.block_1 = ResnetBlock(
|
447 |
+
in_channels=block_in, out_channels=block_in, temb_channels=self.temb_ch, dropout=dropout
|
448 |
+
)
|
449 |
+
self.mid.attn_1 = AttnBlock(block_in)
|
450 |
+
self.mid.block_2 = ResnetBlock(
|
451 |
+
in_channels=block_in, out_channels=block_in, temb_channels=self.temb_ch, dropout=dropout
|
452 |
+
)
|
453 |
+
|
454 |
+
# upsampling
|
455 |
+
self.up = nn.ModuleList()
|
456 |
+
for i_level in reversed(range(self.num_resolutions)):
|
457 |
+
block = nn.ModuleList()
|
458 |
+
attn = nn.ModuleList()
|
459 |
+
block_out = ch * ch_mult[i_level]
|
460 |
+
for i_block in range(self.num_res_blocks + 1):
|
461 |
+
block.append(
|
462 |
+
ResnetBlock(
|
463 |
+
in_channels=block_in, out_channels=block_out, temb_channels=self.temb_ch, dropout=dropout
|
464 |
+
)
|
465 |
+
)
|
466 |
+
block_in = block_out
|
467 |
+
if curr_res in attn_resolutions:
|
468 |
+
attn.append(AttnBlock(block_in))
|
469 |
+
up = nn.Module()
|
470 |
+
up.block = block
|
471 |
+
up.attn = attn
|
472 |
+
if i_level != 0:
|
473 |
+
up.upsample = Upsample(block_in, resamp_with_conv)
|
474 |
+
curr_res = curr_res * 2
|
475 |
+
self.up.insert(0, up) # prepend to get consistent order
|
476 |
+
|
477 |
+
# end
|
478 |
+
self.norm_out = Normalize(block_in)
|
479 |
+
self.conv_out = torch.nn.Conv2d(block_in, out_ch, kernel_size=3, stride=1, padding=1)
|
480 |
+
|
481 |
+
def forward(self, z):
|
482 |
+
# assert z.shape[1:] == self.z_shape[1:]
|
483 |
+
self.last_z_shape = z.shape
|
484 |
+
|
485 |
+
# timestep embedding
|
486 |
+
temb = None
|
487 |
+
|
488 |
+
# z to block_in
|
489 |
+
h = self.conv_in(z)
|
490 |
+
|
491 |
+
# middle
|
492 |
+
h = self.mid.block_1(h, temb)
|
493 |
+
h = self.mid.attn_1(h)
|
494 |
+
h = self.mid.block_2(h, temb)
|
495 |
+
|
496 |
+
# upsampling
|
497 |
+
for i_level in reversed(range(self.num_resolutions)):
|
498 |
+
for i_block in range(self.num_res_blocks + 1):
|
499 |
+
h = self.up[i_level].block[i_block](h, temb)
|
500 |
+
if len(self.up[i_level].attn) > 0:
|
501 |
+
h = self.up[i_level].attn[i_block](h)
|
502 |
+
if i_level != 0:
|
503 |
+
h = self.up[i_level].upsample(h)
|
504 |
+
|
505 |
+
# end
|
506 |
+
if self.give_pre_end:
|
507 |
+
return h
|
508 |
+
|
509 |
+
h = self.norm_out(h)
|
510 |
+
h = nonlinearity(h)
|
511 |
+
h = self.conv_out(h)
|
512 |
+
return h
|
513 |
+
|
514 |
+
|
515 |
+
class VectorQuantizer(nn.Module):
|
516 |
+
"""
|
517 |
+
Improved version over VectorQuantizer, can be used as a drop-in replacement. Mostly
|
518 |
+
avoids costly matrix multiplications and allows for post-hoc remapping of indices.
|
519 |
+
"""
|
520 |
+
|
521 |
+
# NOTE: due to a bug the beta term was applied to the wrong term. for
|
522 |
+
# backwards compatibility we use the buggy version by default, but you can
|
523 |
+
# specify legacy=False to fix it.
|
524 |
+
def __init__(self, n_e, e_dim, beta, remap=None, unknown_index="random", sane_index_shape=False, legacy=True):
|
525 |
+
super().__init__()
|
526 |
+
self.n_e = n_e
|
527 |
+
self.e_dim = e_dim
|
528 |
+
self.beta = beta
|
529 |
+
self.legacy = legacy
|
530 |
+
|
531 |
+
self.embedding = nn.Embedding(self.n_e, self.e_dim)
|
532 |
+
self.embedding.weight.data.uniform_(-1.0 / self.n_e, 1.0 / self.n_e)
|
533 |
+
|
534 |
+
self.remap = remap
|
535 |
+
if self.remap is not None:
|
536 |
+
self.register_buffer("used", torch.tensor(np.load(self.remap)))
|
537 |
+
self.re_embed = self.used.shape[0]
|
538 |
+
self.unknown_index = unknown_index # "random" or "extra" or integer
|
539 |
+
if self.unknown_index == "extra":
|
540 |
+
self.unknown_index = self.re_embed
|
541 |
+
self.re_embed = self.re_embed + 1
|
542 |
+
print(
|
543 |
+
f"Remapping {self.n_e} indices to {self.re_embed} indices. "
|
544 |
+
f"Using {self.unknown_index} for unknown indices."
|
545 |
+
)
|
546 |
+
else:
|
547 |
+
self.re_embed = n_e
|
548 |
+
|
549 |
+
self.sane_index_shape = sane_index_shape
|
550 |
+
|
551 |
+
def remap_to_used(self, inds):
|
552 |
+
ishape = inds.shape
|
553 |
+
assert len(ishape) > 1
|
554 |
+
inds = inds.reshape(ishape[0], -1)
|
555 |
+
used = self.used.to(inds)
|
556 |
+
match = (inds[:, :, None] == used[None, None, ...]).long()
|
557 |
+
new = match.argmax(-1)
|
558 |
+
unknown = match.sum(2) < 1
|
559 |
+
if self.unknown_index == "random":
|
560 |
+
new[unknown] = torch.randint(0, self.re_embed, size=new[unknown].shape).to(device=new.device)
|
561 |
+
else:
|
562 |
+
new[unknown] = self.unknown_index
|
563 |
+
return new.reshape(ishape)
|
564 |
+
|
565 |
+
def unmap_to_all(self, inds):
|
566 |
+
ishape = inds.shape
|
567 |
+
assert len(ishape) > 1
|
568 |
+
inds = inds.reshape(ishape[0], -1)
|
569 |
+
used = self.used.to(inds)
|
570 |
+
if self.re_embed > self.used.shape[0]: # extra token
|
571 |
+
inds[inds >= self.used.shape[0]] = 0 # simply set to zero
|
572 |
+
back = torch.gather(used[None, :][inds.shape[0] * [0], :], 1, inds)
|
573 |
+
return back.reshape(ishape)
|
574 |
+
|
575 |
+
def forward(self, z, temp=None, rescale_logits=False, return_logits=False):
|
576 |
+
assert temp is None or temp == 1.0, "Only for interface compatible with Gumbel"
|
577 |
+
assert rescale_logits == False, "Only for interface compatible with Gumbel"
|
578 |
+
assert return_logits == False, "Only for interface compatible with Gumbel"
|
579 |
+
# reshape z -> (batch, height, width, channel) and flatten
|
580 |
+
z = rearrange(z, "b c h w -> b h w c").contiguous()
|
581 |
+
z_flattened = z.view(-1, self.e_dim)
|
582 |
+
# distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z
|
583 |
+
|
584 |
+
d = (
|
585 |
+
torch.sum(z_flattened**2, dim=1, keepdim=True)
|
586 |
+
+ torch.sum(self.embedding.weight**2, dim=1)
|
587 |
+
- 2 * torch.einsum("bd,dn->bn", z_flattened, rearrange(self.embedding.weight, "n d -> d n"))
|
588 |
+
)
|
589 |
+
|
590 |
+
min_encoding_indices = torch.argmin(d, dim=1)
|
591 |
+
z_q = self.embedding(min_encoding_indices).view(z.shape)
|
592 |
+
perplexity = None
|
593 |
+
min_encodings = None
|
594 |
+
|
595 |
+
# compute loss for embedding
|
596 |
+
if not self.legacy:
|
597 |
+
loss = self.beta * torch.mean((z_q.detach() - z) ** 2) + torch.mean((z_q - z.detach()) ** 2)
|
598 |
+
else:
|
599 |
+
loss = torch.mean((z_q.detach() - z) ** 2) + self.beta * torch.mean((z_q - z.detach()) ** 2)
|
600 |
+
|
601 |
+
# preserve gradients
|
602 |
+
z_q = z + (z_q - z).detach()
|
603 |
+
|
604 |
+
# reshape back to match original input shape
|
605 |
+
z_q = rearrange(z_q, "b h w c -> b c h w").contiguous()
|
606 |
+
|
607 |
+
if self.remap is not None:
|
608 |
+
min_encoding_indices = min_encoding_indices.reshape(z.shape[0], -1) # add batch axis
|
609 |
+
min_encoding_indices = self.remap_to_used(min_encoding_indices)
|
610 |
+
min_encoding_indices = min_encoding_indices.reshape(-1, 1) # flatten
|
611 |
+
|
612 |
+
if self.sane_index_shape:
|
613 |
+
min_encoding_indices = min_encoding_indices.reshape(z_q.shape[0], z_q.shape[2], z_q.shape[3])
|
614 |
+
|
615 |
+
return z_q, loss, (perplexity, min_encodings, min_encoding_indices)
|
616 |
+
|
617 |
+
def get_codebook_entry(self, indices, shape):
|
618 |
+
# shape specifying (batch, height, width, channel)
|
619 |
+
if self.remap is not None:
|
620 |
+
indices = indices.reshape(shape[0], -1) # add batch axis
|
621 |
+
indices = self.unmap_to_all(indices)
|
622 |
+
indices = indices.reshape(-1) # flatten again
|
623 |
+
|
624 |
+
# get quantized latent vectors
|
625 |
+
z_q = self.embedding(indices)
|
626 |
+
|
627 |
+
if shape is not None:
|
628 |
+
z_q = z_q.view(shape)
|
629 |
+
# reshape back to match original input shape
|
630 |
+
z_q = z_q.permute(0, 3, 1, 2).contiguous()
|
631 |
+
|
632 |
+
return z_q
|
633 |
+
|
634 |
+
|
635 |
+
class VQModel(ModelMixin, ConfigMixin):
|
636 |
+
def __init__(
|
637 |
+
self,
|
638 |
+
ch,
|
639 |
+
out_ch,
|
640 |
+
num_res_blocks,
|
641 |
+
attn_resolutions,
|
642 |
+
in_channels,
|
643 |
+
resolution,
|
644 |
+
z_channels,
|
645 |
+
n_embed,
|
646 |
+
embed_dim,
|
647 |
+
remap=None,
|
648 |
+
sane_index_shape=False, # tell vector quantizer to return indices as bhw
|
649 |
+
ch_mult=(1, 2, 4, 8),
|
650 |
+
dropout=0.0,
|
651 |
+
double_z=True,
|
652 |
+
resamp_with_conv=True,
|
653 |
+
give_pre_end=False,
|
654 |
+
):
|
655 |
+
super().__init__()
|
656 |
+
|
657 |
+
# register all __init__ params with self.register
|
658 |
+
self.register(
|
659 |
+
ch=ch,
|
660 |
+
out_ch=out_ch,
|
661 |
+
num_res_blocks=num_res_blocks,
|
662 |
+
attn_resolutions=attn_resolutions,
|
663 |
+
in_channels=in_channels,
|
664 |
+
resolution=resolution,
|
665 |
+
z_channels=z_channels,
|
666 |
+
n_embed=n_embed,
|
667 |
+
embed_dim=embed_dim,
|
668 |
+
remap=remap,
|
669 |
+
sane_index_shape=sane_index_shape,
|
670 |
+
ch_mult=ch_mult,
|
671 |
+
dropout=dropout,
|
672 |
+
double_z=double_z,
|
673 |
+
resamp_with_conv=resamp_with_conv,
|
674 |
+
give_pre_end=give_pre_end,
|
675 |
+
)
|
676 |
+
|
677 |
+
# pass init params to Encoder
|
678 |
+
self.encoder = Encoder(
|
679 |
+
ch=ch,
|
680 |
+
out_ch=out_ch,
|
681 |
+
num_res_blocks=num_res_blocks,
|
682 |
+
attn_resolutions=attn_resolutions,
|
683 |
+
in_channels=in_channels,
|
684 |
+
resolution=resolution,
|
685 |
+
z_channels=z_channels,
|
686 |
+
ch_mult=ch_mult,
|
687 |
+
dropout=dropout,
|
688 |
+
resamp_with_conv=resamp_with_conv,
|
689 |
+
double_z=double_z,
|
690 |
+
give_pre_end=give_pre_end,
|
691 |
+
)
|
692 |
+
|
693 |
+
self.quantize = VectorQuantizer(n_embed, embed_dim, beta=0.25, remap=remap, sane_index_shape=sane_index_shape)
|
694 |
+
|
695 |
+
# pass init params to Decoder
|
696 |
+
self.decoder = Decoder(
|
697 |
+
ch=ch,
|
698 |
+
out_ch=out_ch,
|
699 |
+
num_res_blocks=num_res_blocks,
|
700 |
+
attn_resolutions=attn_resolutions,
|
701 |
+
in_channels=in_channels,
|
702 |
+
resolution=resolution,
|
703 |
+
z_channels=z_channels,
|
704 |
+
ch_mult=ch_mult,
|
705 |
+
dropout=dropout,
|
706 |
+
resamp_with_conv=resamp_with_conv,
|
707 |
+
give_pre_end=give_pre_end,
|
708 |
+
)
|
709 |
+
|
710 |
+
def encode(self, x):
|
711 |
+
h = self.encoder(x)
|
712 |
+
h = self.quant_conv(h)
|
713 |
+
return h
|
714 |
+
|
715 |
+
def decode(self, h, force_not_quantize=False):
|
716 |
+
# also go through quantization layer
|
717 |
+
if not force_not_quantize:
|
718 |
+
quant, emb_loss, info = self.quantize(h)
|
719 |
+
else:
|
720 |
+
quant = h
|
721 |
+
quant = self.post_quant_conv(quant)
|
722 |
+
dec = self.decoder(quant)
|
723 |
+
return dec
|
724 |
+
|
725 |
+
|
726 |
+
class DiagonalGaussianDistribution(object):
|
727 |
+
def __init__(self, parameters, deterministic=False):
|
728 |
+
self.parameters = parameters
|
729 |
+
self.mean, self.logvar = torch.chunk(parameters, 2, dim=1)
|
730 |
+
self.logvar = torch.clamp(self.logvar, -30.0, 20.0)
|
731 |
+
self.deterministic = deterministic
|
732 |
+
self.std = torch.exp(0.5 * self.logvar)
|
733 |
+
self.var = torch.exp(self.logvar)
|
734 |
+
if self.deterministic:
|
735 |
+
self.var = self.std = torch.zeros_like(self.mean).to(device=self.parameters.device)
|
736 |
+
|
737 |
+
def sample(self):
|
738 |
+
x = self.mean + self.std * torch.randn(self.mean.shape).to(device=self.parameters.device)
|
739 |
+
return x
|
740 |
+
|
741 |
+
def kl(self, other=None):
|
742 |
+
if self.deterministic:
|
743 |
+
return torch.Tensor([0.])
|
744 |
+
else:
|
745 |
+
if other is None:
|
746 |
+
return 0.5 * torch.sum(torch.pow(self.mean, 2)
|
747 |
+
+ self.var - 1.0 - self.logvar,
|
748 |
+
dim=[1, 2, 3])
|
749 |
+
else:
|
750 |
+
return 0.5 * torch.sum(
|
751 |
+
torch.pow(self.mean - other.mean, 2) / other.var
|
752 |
+
+ self.var / other.var - 1.0 - self.logvar + other.logvar,
|
753 |
+
dim=[1, 2, 3])
|
754 |
+
|
755 |
+
def nll(self, sample, dims=[1,2,3]):
|
756 |
+
if self.deterministic:
|
757 |
+
return torch.Tensor([0.])
|
758 |
+
logtwopi = np.log(2.0 * np.pi)
|
759 |
+
return 0.5 * torch.sum(
|
760 |
+
logtwopi + self.logvar + torch.pow(sample - self.mean, 2) / self.var,
|
761 |
+
dim=dims)
|
762 |
+
|
763 |
+
def mode(self):
|
764 |
+
return self.mean
|
765 |
+
|
766 |
+
class AutoencoderKL(ModelMixin, ConfigMixin):
|
767 |
+
def __init__(
|
768 |
+
self,
|
769 |
+
ch,
|
770 |
+
out_ch,
|
771 |
+
num_res_blocks,
|
772 |
+
attn_resolutions,
|
773 |
+
in_channels,
|
774 |
+
resolution,
|
775 |
+
z_channels,
|
776 |
+
embed_dim,
|
777 |
+
remap=None,
|
778 |
+
sane_index_shape=False, # tell vector quantizer to return indices as bhw
|
779 |
+
ch_mult=(1, 2, 4, 8),
|
780 |
+
dropout=0.0,
|
781 |
+
double_z=True,
|
782 |
+
resamp_with_conv=True,
|
783 |
+
give_pre_end=False,
|
784 |
+
):
|
785 |
+
super().__init__()
|
786 |
+
|
787 |
+
# register all __init__ params with self.register
|
788 |
+
self.register(
|
789 |
+
ch=ch,
|
790 |
+
out_ch=out_ch,
|
791 |
+
num_res_blocks=num_res_blocks,
|
792 |
+
attn_resolutions=attn_resolutions,
|
793 |
+
in_channels=in_channels,
|
794 |
+
resolution=resolution,
|
795 |
+
z_channels=z_channels,
|
796 |
+
embed_dim=embed_dim,
|
797 |
+
remap=remap,
|
798 |
+
sane_index_shape=sane_index_shape,
|
799 |
+
ch_mult=ch_mult,
|
800 |
+
dropout=dropout,
|
801 |
+
double_z=double_z,
|
802 |
+
resamp_with_conv=resamp_with_conv,
|
803 |
+
give_pre_end=give_pre_end,
|
804 |
+
)
|
805 |
+
|
806 |
+
# pass init params to Encoder
|
807 |
+
self.encoder = Encoder(
|
808 |
+
ch=ch,
|
809 |
+
out_ch=out_ch,
|
810 |
+
num_res_blocks=num_res_blocks,
|
811 |
+
attn_resolutions=attn_resolutions,
|
812 |
+
in_channels=in_channels,
|
813 |
+
resolution=resolution,
|
814 |
+
z_channels=z_channels,
|
815 |
+
ch_mult=ch_mult,
|
816 |
+
dropout=dropout,
|
817 |
+
resamp_with_conv=resamp_with_conv,
|
818 |
+
double_z=double_z,
|
819 |
+
give_pre_end=give_pre_end,
|
820 |
+
)
|
821 |
+
|
822 |
+
# pass init params to Decoder
|
823 |
+
self.decoder = Decoder(
|
824 |
+
ch=ch,
|
825 |
+
out_ch=out_ch,
|
826 |
+
num_res_blocks=num_res_blocks,
|
827 |
+
attn_resolutions=attn_resolutions,
|
828 |
+
in_channels=in_channels,
|
829 |
+
resolution=resolution,
|
830 |
+
z_channels=z_channels,
|
831 |
+
ch_mult=ch_mult,
|
832 |
+
dropout=dropout,
|
833 |
+
resamp_with_conv=resamp_with_conv,
|
834 |
+
give_pre_end=give_pre_end,
|
835 |
+
)
|
836 |
+
|
837 |
+
self.quant_conv = torch.nn.Conv2d(2*z_channels, 2*embed_dim, 1)
|
838 |
+
self.post_quant_conv = torch.nn.Conv2d(embed_dim, z_channels, 1)
|
839 |
+
|
840 |
+
def encode(self, x):
|
841 |
+
h = self.encoder(x)
|
842 |
+
moments = self.quant_conv(h)
|
843 |
+
posterior = DiagonalGaussianDistribution(moments)
|
844 |
+
return posterior
|
845 |
+
|
846 |
+
def decode(self, z):
|
847 |
+
z = self.post_quant_conv(z)
|
848 |
+
dec = self.decoder(z)
|
849 |
+
return dec
|
850 |
+
|
851 |
+
def forward(self, input, sample_posterior=True):
|
852 |
+
posterior = self.encode(input)
|
853 |
+
if sample_posterior:
|
854 |
+
z = posterior.sample()
|
855 |
+
else:
|
856 |
+
z = posterior.mode()
|
857 |
+
dec = self.decode(z)
|
858 |
+
return dec, posterior
|