ddim-celeba-hq / modeling_ddim.py
patrickvonplaten's picture
Upload modeling_ddim.py
b41c4e7
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
import tqdm
from diffusers import DiffusionPipeline
class DDIM(DiffusionPipeline):
def __init__(self, unet, noise_scheduler):
super().__init__()
self.register_modules(unet=unet, noise_scheduler=noise_scheduler)
def __call__(self, batch_size=1, generator=None, torch_device=None, eta=0.0, num_inference_steps=50):
# eta corresponds to η in paper and should be between [0, 1]
if torch_device is None:
torch_device = "cuda" if torch.cuda.is_available() else "cpu"
num_trained_timesteps = self.noise_scheduler.num_timesteps
inference_step_times = range(0, num_trained_timesteps, num_trained_timesteps // num_inference_steps)
self.unet.to(torch_device)
# Sample gaussian noise to begin loop
image = self.noise_scheduler.sample_noise(
(batch_size, self.unet.in_channels, self.unet.resolution, self.unet.resolution),
device=torch_device,
generator=generator,
)
# See formulas (9), (10) and (7) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf
# Ideally, read DDIM paper in-detail understanding
# Notation (<variable name> -> <name in paper>
# - pred_noise_t -> e_theta(x_t, t)
# - pred_original_image -> f_theta(x_t, t) or x_0
# - std_dev_t -> sigma_t
for t in tqdm.tqdm(reversed(range(num_inference_steps)), total=num_inference_steps):
# 1. predict noise residual
with torch.no_grad():
pred_noise_t = self.unet(image, inference_step_times[t])
# 2. get actual t and t-1
train_step = inference_step_times[t]
prev_train_step = inference_step_times[t - 1] if t > 0 else -1
# 3. compute alphas, betas
alpha_prod_t = self.noise_scheduler.get_alpha_prod(train_step)
alpha_prod_t_prev = self.noise_scheduler.get_alpha_prod(prev_train_step)
beta_prod_t_sqrt = (1 - alpha_prod_t).sqrt()
beta_prod_t_prev_sqrt = (1 - alpha_prod_t_prev).sqrt()
# 4. Compute predicted previous image from predicted noise
# First: compute predicted original image from predicted noise also called
# "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
pred_original_image = (image - beta_prod_t_sqrt * pred_noise_t) / alpha_prod_t.sqrt()
# Second: Clip "predicted x_0"
pred_original_image = torch.clamp(pred_original_image, -1, 1)
# Third: Compute variance: "sigma_t" -> see
# std_dev_t = (1 - alpha_prod_t / alpha_prod_t_prev).sqrt() * beta_prod_t_prev_sqrt / beta_prod_t_sqrt
std_dev_t = (1 - alpha_prod_t / alpha_prod_t_prev).sqrt()
std_dev_t = std_dev_t * eta
# Fourth: Compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
pred_image_direction = (1 - alpha_prod_t_prev - std_dev_t**2).sqrt() * pred_noise_t
# Fourth: Compute outer formula (DDIM formula)
pred_prev_image = alpha_prod_t_prev.sqrt() * pred_original_image + pred_image_direction
# if eta > 0.0 add noise. Note eta = 1.0 essentially corresponds to DDPM
if eta > 0.0:
noise = self.noise_scheduler.sample_noise(image.shape, device=image.device, generator=generator)
prev_image = pred_prev_image + std_dev_t * noise
else:
prev_image = pred_prev_image
# Set current image to prev_image: x_t -> x_t-1
image = prev_image
return image