|
from typing import Dict, List |
|
from transformers import AutoTokenizer |
|
from adapters import AutoAdapterModel |
|
|
|
class AdapterHandler: |
|
def __init__(self): |
|
self.tokenizer = None |
|
self.model = None |
|
|
|
def initialize(self, model_dir: str): |
|
self.tokenizer = AutoTokenizer.from_pretrained(model_dir) |
|
self.model = AutoAdapterModel.from_pretrained(model_dir) |
|
|
|
self.model.load_adapter("specter2_proximity", source="local") |
|
self.model.set_active_adapters("specter2_proximity") |
|
return self |
|
|
|
def __call__(self, data: Dict[str, List[str]]) -> Dict[str, List[float]]: |
|
titles = data.get("title", [""]) |
|
abstracts = data.get("abstract", [""] * len(titles)) |
|
|
|
|
|
combined = [ |
|
title + self.tokenizer.sep_token + (abstract or "") |
|
for title, abstract in zip(titles, abstracts) |
|
] |
|
|
|
|
|
inputs = self.tokenizer( |
|
combined, |
|
padding=True, |
|
truncation=True, |
|
return_tensors="pt", |
|
return_token_type_ids=False, |
|
max_length=512 |
|
) |
|
|
|
|
|
with torch.no_grad(): |
|
outputs = self.model(**inputs) |
|
embeddings = outputs.last_hidden_state[:, 0, :].numpy() |
|
|
|
return {"embeddings": embeddings.tolist()} |
|
|