Push initial pipeline
Browse files- rct_diffusion_pipeline.py +15 -0
- test_pipeline.py +8 -0
rct_diffusion_pipeline.py
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from diffusers import DiffusionPipeline
|
2 |
+
import torch
|
3 |
+
|
4 |
+
class RCTDiffusionPipeline(DiffusionPipeline):
|
5 |
+
def __init__(self, unet, scheduler):
|
6 |
+
super().__init__()
|
7 |
+
self.register_modules(unet=unet, scheduler=scheduler)
|
8 |
+
|
9 |
+
def __call__(self):
|
10 |
+
image = torch.randn((1, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size))
|
11 |
+
timestep = 1
|
12 |
+
|
13 |
+
model_output = self.unet(image, timestep).sample
|
14 |
+
scheduler_output = self.scheduler.step(model_output, timestep, image).prev_sample
|
15 |
+
return scheduler_output
|
test_pipeline.py
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from rct_diffusion_pipeline import RCTDiffusionPipeline
|
2 |
+
from diffusers import DDPMScheduler, UNet2DModel
|
3 |
+
|
4 |
+
scheduler = DDPMScheduler()
|
5 |
+
unet = UNet2DModel()
|
6 |
+
|
7 |
+
pipeline = RCTDiffusionPipeline(unet=unet, scheduler=scheduler)
|
8 |
+
output = pipeline()
|