frangiral commited on
Commit
f360ef8
1 Parent(s): 7a09fc3

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -2.65 +/- 1.18
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:394d7226b42aca58548a26c52ffaa0beaae8dc28ec60ee6482084b065816d1d9
3
+ size 108026
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f3a451f5670>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc_data object at 0x7f3a451e8d50>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "observation_space": {
23
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
24
+ ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
25
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
26
+ "_shape": null,
27
+ "dtype": null,
28
+ "_np_random": null
29
+ },
30
+ "action_space": {
31
+ ":type:": "<class 'gym.spaces.box.Box'>",
32
+ ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
33
+ "dtype": "float32",
34
+ "_shape": [
35
+ 3
36
+ ],
37
+ "low": "[-1. -1. -1.]",
38
+ "high": "[1. 1. 1.]",
39
+ "bounded_below": "[ True True True]",
40
+ "bounded_above": "[ True True True]",
41
+ "_np_random": null
42
+ },
43
+ "n_envs": 4,
44
+ "num_timesteps": 353564,
45
+ "_total_timesteps": 1000000,
46
+ "_num_timesteps_at_start": 0,
47
+ "seed": null,
48
+ "action_noise": null,
49
+ "start_time": 1676389089749887566,
50
+ "learning_rate": 0.0007,
51
+ "tensorboard_log": null,
52
+ "lr_schedule": {
53
+ ":type:": "<class 'function'>",
54
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
55
+ },
56
+ "_last_obs": {
57
+ ":type:": "<class 'collections.OrderedDict'>",
58
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAuGLsPX1Uoz+dQ0s+iQUFPwXbtr5aPRs/bjsivqpgyj/J9A6+BO6ePq8Msr9JWD8/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAun1svsKVpj9dgdM+iY+NPhqR3r6Qblg/7i0Rv5mqxT/W7Zo9a6SGvqfhv786aGs/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAC4Yuw9fVSjP51DSz40kfU94uaivv7VRT6JBQU/Bdu2vlo9Gz+3vZU8WOB6PBnUHrtuOyK+qmDKP8n0Dr7gjlm9lBVnPaGVEr4E7p4+rwyyv0lYPz+SmDk9tU7TPLKEaT2UaA5LBEsGhpRoEnSUUpR1Lg==",
59
+ "achieved_goal": "[[ 0.11542267 1.2760159 0.19850011]\n [ 0.5196157 -0.35713974 0.6064049 ]\n [-0.15842983 1.581075 -0.13960566]\n [ 0.31040967 -1.3910121 0.7474409 ]]",
60
+ "desired_goal": "[[-0.23094836 1.3014452 0.41309634]\n [ 0.2764857 -0.4347008 0.84543705]\n [-0.5671071 1.5442687 0.07564895]\n [-0.26297316 -1.4990739 0.9195591 ]]",
61
+ "observation": "[[ 0.11542267 1.2760159 0.19850011 0.11990586 -0.31816775 0.19319913]\n [ 0.5196157 -0.35713974 0.6064049 0.01827894 0.01531228 -0.00242353]\n [-0.15842983 1.581075 -0.13960566 -0.05311477 0.05641706 -0.14314891]\n [ 0.31040967 -1.3910121 0.7474409 0.04531152 0.02579437 0.05701131]]"
62
+ },
63
+ "_last_episode_starts": {
64
+ ":type:": "<class 'numpy.ndarray'>",
65
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
66
+ },
67
+ "_last_original_obs": {
68
+ ":type:": "<class 'collections.OrderedDict'>",
69
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA+8AWPpiR9T3vT3o9cMuPPSSdEb2iKG8+ko7bPUlwybvweoc9S/invbFtIDz84uA8lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
70
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
71
+ "desired_goal": "[[ 0.14722054 0.1199066 0.06111139]\n [ 0.07021224 -0.03555025 0.23355344]\n [ 0.10720553 -0.00614742 0.06615245]\n [-0.08201655 0.00979178 0.02745198]]",
72
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
73
+ },
74
+ "_episode_num": 0,
75
+ "use_sde": false,
76
+ "sde_sample_freq": -1,
77
+ "_current_progress_remaining": 0.64644,
78
+ "ep_info_buffer": {
79
+ ":type:": "<class 'collections.deque'>",
80
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIkJ4ih4ib4L+UhpRSlIwBbJRLMowBdJRHQJEYBHPNVzZ1fZQoaAZoCWgPQwhSSDKrdzjmv5SGlFKUaBVLMmgWR0CRF4KWszVMdX2UKGgGaAloD0MInMWLhSFy1b+UhpRSlGgVSzJoFkdAkRcC6pYLcHV9lChoBmgJaA9DCEYnS633G9W/lIaUUpRoFUsyaBZHQJEWf1YhdMV1fZQoaAZoCWgPQwjVrglpjUHev5SGlFKUaBVLMmgWR0CRGl5qubI+dX2UKGgGaAloD0MI6X+5Fi1A07+UhpRSlGgVSzJoFkdAkRncxwhnrnV9lChoBmgJaA9DCJCeIoeIm+u/lIaUUpRoFUsyaBZHQJEZXOPeYUp1fZQoaAZoCWgPQwjufD81Xrrjv5SGlFKUaBVLMmgWR0CRGNlHjIaMdX2UKGgGaAloD0MI91eP+1br17+UhpRSlGgVSzJoFkdAkRyX225QQHV9lChoBmgJaA9DCCR9WkV/aNO/lIaUUpRoFUsyaBZHQJEcFgXuVop1fZQoaAZoCWgPQwhTsMbZdATav5SGlFKUaBVLMmgWR0CRG5XHim2tdX2UKGgGaAloD0MIIAw89x4u6r+UhpRSlGgVSzJoFkdAkRsSAxzq8nV9lChoBmgJaA9DCBd/2xMktuq/lIaUUpRoFUsyaBZHQJEe6QgcLjR1fZQoaAZoCWgPQwgD0Chd+pfav5SGlFKUaBVLMmgWR0CRHmdnkDISdX2UKGgGaAloD0MI7lpCPujZ2L+UhpRSlGgVSzJoFkdAkR3nl4keIXV9lChoBmgJaA9DCKIOK9zyEeS/lIaUUpRoFUsyaBZHQJEdY65oXbd1fZQoaAZoCWgPQwiMaDum7krjv5SGlFKUaBVLMmgWR0CRInsE7nxKdX2UKGgGaAloD0MIxZCcTNyq47+UhpRSlGgVSzJoFkdAkSH7BTGYKXV9lChoBmgJaA9DCFxWYTPABe+/lIaUUpRoFUsyaBZHQJEhfQrtmcx1fZQoaAZoCWgPQwihEWxc/67ev5SGlFKUaBVLMmgWR0CRIPtITXardX2UKGgGaAloD0MIDypxHeOK3b+UhpRSlGgVSzJoFkdAkSZRYvFm4HV9lChoBmgJaA9DCBxg5jv4iea/lIaUUpRoFUsyaBZHQJEl0qBmPHV1fZQoaAZoCWgPQwiXxcTm41rmv5SGlFKUaBVLMmgWR0CRJVSMLncMdX2UKGgGaAloD0MIYOrnTUUq5r+UhpRSlGgVSzJoFkdAkSTSRSxZ+3V9lChoBmgJaA9DCMFz7+GS49i/lIaUUpRoFUsyaBZHQJEqt63RXwN1fZQoaAZoCWgPQwjxK9Zwkfvlv5SGlFKUaBVLMmgWR0CRKjp97WupdX2UKGgGaAloD0MInDI334hu77+UhpRSlGgVSzJoFkdAkSm8pTdcjnV9lChoBmgJaA9DCBe5p6s7Fuu/lIaUUpRoFUsyaBZHQJEpOjsUqQR1fZQoaAZoCWgPQwjtndFWJRHuv5SGlFKUaBVLMmgWR0CRLs0/4ZdfdX2UKGgGaAloD0MIguMybmoAAMCUhpRSlGgVSzJoFkdAkS5NnbqQinV9lChoBmgJaA9DCMFTyJV6Ft2/lIaUUpRoFUsyaBZHQJEtz5SFXaJ1fZQoaAZoCWgPQwgBamrZWt/kv5SGlFKUaBVLMmgWR0CRLU3mV7hOdX2UKGgGaAloD0MISutvCcC/7b+UhpRSlGgVSzJoFkdAkTL7ApKBd3V9lChoBmgJaA9DCCs0EMtmDvW/lIaUUpRoFUsyaBZHQJEye7voePt1fZQoaAZoCWgPQwhtdM5PcVzzv5SGlFKUaBVLMmgWR0CRMf3UQTVUdX2UKGgGaAloD0MIWf0RhgHL47+UhpRSlGgVSzJoFkdAkTF79VFQVXV9lChoBmgJaA9DCLVsrS8S2ui/lIaUUpRoFUsyaBZHQJE2h94NZvF1fZQoaAZoCWgPQwicpPljWpvbv5SGlFKUaBVLMmgWR0CRNgXoTwlTdX2UKGgGaAloD0MIxSCwcmgR4r+UhpRSlGgVSzJoFkdAkTWF+Zw4sHV9lChoBmgJaA9DCAouVtRgWvS/lIaUUpRoFUsyaBZHQJE1AiPhhph1fZQoaAZoCWgPQwiI9xxYjhDiv5SGlFKUaBVLMmgWR0CROPs052hadX2UKGgGaAloD0MIXRd+cD5147+UhpRSlGgVSzJoFkdAkTh5IlMRH3V9lChoBmgJaA9DCDp2UInrmOe/lIaUUpRoFUsyaBZHQJE3+PV/c351fZQoaAZoCWgPQwg9DRgkfZr0v5SGlFKUaBVLMmgWR0CRN3Ty8SPEdX2UKGgGaAloD0MIajNOQ1Th/r+UhpRSlGgVSzJoFkdAkTtO8K5TZXV9lChoBmgJaA9DCFrz4y8t6uy/lIaUUpRoFUsyaBZHQJE6zSQYDT11fZQoaAZoCWgPQwiuRnalZUQBwJSGlFKUaBVLMmgWR0CROk12JSBLdX2UKGgGaAloD0MI2CssuB9w7L+UhpRSlGgVSzJoFkdAkTnJyIYWL3V9lChoBmgJaA9DCLQh/8wgPua/lIaUUpRoFUsyaBZHQJE9lVU+9rZ1fZQoaAZoCWgPQwj3zJIANbXhv5SGlFKUaBVLMmgWR0CRPROXVsk6dX2UKGgGaAloD0MI9n04SIiy97+UhpRSlGgVSzJoFkdAkTyTe9Ba93V9lChoBmgJaA9DCFAcQL/v3/i/lIaUUpRoFUsyaBZHQJE8D4DcM3J1fZQoaAZoCWgPQwiTc2IP7WPov5SGlFKUaBVLMmgWR0CRQAHVwxWUdX2UKGgGaAloD0MIGFxzR//L8b+UhpRSlGgVSzJoFkdAkT+AGOdXk3V9lChoBmgJaA9DCBdky/J1GeK/lIaUUpRoFUsyaBZHQJE/AE6kqMF1fZQoaAZoCWgPQwi8lLpkHIMAwJSGlFKUaBVLMmgWR0CRPn1FH8TBdX2UKGgGaAloD0MI+yR32ERm9r+UhpRSlGgVSzJoFkdAkUKFb/wRXnV9lChoBmgJaA9DCCKJXkax3O+/lIaUUpRoFUsyaBZHQJFCA62fChx1fZQoaAZoCWgPQwhO7+L9uP0AwJSGlFKUaBVLMmgWR0CRQYVEd/8VdX2UKGgGaAloD0MI2Lyqs1pg9L+UhpRSlGgVSzJoFkdAkUEB4+r2g3V9lChoBmgJaA9DCOWdQxmqovi/lIaUUpRoFUsyaBZHQJFE0ZBLPD51fZQoaAZoCWgPQwiPi2oRUUzxv5SGlFKUaBVLMmgWR0CRRE/z8P4EdX2UKGgGaAloD0MI7DAm/b1U9b+UhpRSlGgVSzJoFkdAkUPP5k9U0nV9lChoBmgJaA9DCKZ8CKpGb/i/lIaUUpRoFUsyaBZHQJFDTKV6eGx1fZQoaAZoCWgPQwjcaABvgQQHwJSGlFKUaBVLMmgWR0CRRxc5bQkYdX2UKGgGaAloD0MIbOo8Kv4v/L+UhpRSlGgVSzJoFkdAkUaVu76HkHV9lChoBmgJaA9DCOIC0Chd+uO/lIaUUpRoFUsyaBZHQJFGFbmlqJx1fZQoaAZoCWgPQwgdHy3OGKYBwJSGlFKUaBVLMmgWR0CRRZG2CulodX2UKGgGaAloD0MIoYSZtn8lCcCUhpRSlGgVSzJoFkdAkUljF2mpEXV9lChoBmgJaA9DCADHnj2XafG/lIaUUpRoFUsyaBZHQJFI4Rf4REp1fZQoaAZoCWgPQwgSv2INF/n6v5SGlFKUaBVLMmgWR0CRSGFDv3JxdX2UKGgGaAloD0MIBcHj27sG7r+UhpRSlGgVSzJoFkdAkUfdY4hllXV9lChoBmgJaA9DCJdyvth7cea/lIaUUpRoFUsyaBZHQJFLy8L8aXN1fZQoaAZoCWgPQwgdAHFXr+L5v5SGlFKUaBVLMmgWR0CRS0n4O+ZgdX2UKGgGaAloD0MIvYxiuaVV7b+UhpRSlGgVSzJoFkdAkUrKQeV9nnV9lChoBmgJaA9DCOscA7LXO/G/lIaUUpRoFUsyaBZHQJFKRoysS011fZQoaAZoCWgPQwj2CgvuB5wEwJSGlFKUaBVLMmgWR0CRThf/3nIRdX2UKGgGaAloD0MI4lzDDI0n7b+UhpRSlGgVSzJoFkdAkU2WITGo73V9lChoBmgJaA9DCIf4hy09Gu2/lIaUUpRoFUsyaBZHQJFNFkDp1Rt1fZQoaAZoCWgPQwj8UdSZe8juv5SGlFKUaBVLMmgWR0CRTJJu2qkudX2UKGgGaAloD0MI7ib4pumz9L+UhpRSlGgVSzJoFkdAkVBliF0xM3V9lChoBmgJaA9DCCS1UDI5dfO/lIaUUpRoFUsyaBZHQJFP4/HHWBl1fZQoaAZoCWgPQwg2j8Ng/gryv5SGlFKUaBVLMmgWR0CRT2Qnx8UmdX2UKGgGaAloD0MILnJPV3esAMCUhpRSlGgVSzJoFkdAkU7gbdadMHV9lChoBmgJaA9DCFYsflNYafq/lIaUUpRoFUsyaBZHQJFSrefqX4V1fZQoaAZoCWgPQwgebLHbZ5Xjv5SGlFKUaBVLMmgWR0CRUiwosqaxdX2UKGgGaAloD0MIZqAy/n3G7r+UhpRSlGgVSzJoFkdAkVGsDjin53V9lChoBmgJaA9DCGyTisbavw/AlIaUUpRoFUsyaBZHQJFRKDM/yG11fZQoaAZoCWgPQwiYpghwetf8v5SGlFKUaBVLMmgWR0CRVRDCgsbvdX2UKGgGaAloD0MI4X8r2bERD8CUhpRSlGgVSzJoFkdAkVSO1KGtZHV9lChoBmgJaA9DCElnYORljQPAlIaUUpRoFUsyaBZHQJFUDpMYdhl1fZQoaAZoCWgPQwjK+WLvxbcQwJSGlFKUaBVLMmgWR0CRU4qCHymRdX2UKGgGaAloD0MIVcITev2pAcCUhpRSlGgVSzJoFkdAkVdUZ3s5XHV9lChoBmgJaA9DCHu8kA4PIQPAlIaUUpRoFUsyaBZHQJFW0pd8iOh1fZQoaAZoCWgPQwh16V+SylT+v5SGlFKUaBVLMmgWR0CRVlLy+YdAdX2UKGgGaAloD0MIiSMPRBbp7b+UhpRSlGgVSzJoFkdAkVXPN7jT8nV9lChoBmgJaA9DCM2spYC0/+m/lIaUUpRoFUsyaBZHQJFZ0AzYVZd1fZQoaAZoCWgPQwjUKvpDM0/7v5SGlFKUaBVLMmgWR0CRWU6Mzdk8dX2UKGgGaAloD0MIS+ZY3lVvAsCUhpRSlGgVSzJoFkdAkVjO3QUpNXV9lChoBmgJaA9DCCGVYkfj0Py/lIaUUpRoFUsyaBZHQJFYSymhufp1ZS4="
81
+ },
82
+ "ep_success_buffer": {
83
+ ":type:": "<class 'collections.deque'>",
84
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
85
+ },
86
+ "_n_updates": 17678,
87
+ "n_steps": 5,
88
+ "gamma": 0.99,
89
+ "gae_lambda": 1.0,
90
+ "ent_coef": 0.0,
91
+ "vf_coef": 0.5,
92
+ "max_grad_norm": 0.5,
93
+ "normalize_advantage": false
94
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7970d5d5a4a757967b0c82fb8554f684a978abb9ebd25d372edb5ffecd93c5f7
3
+ size 44734
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7dd968dbfb622ef8b5b160f4358abbf458ac25d2e2e860b80ddb0448eaaa0f84
3
+ size 46014
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f3a451f5670>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f3a451e8d50>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 353564, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1676389089749887566, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAuGLsPX1Uoz+dQ0s+iQUFPwXbtr5aPRs/bjsivqpgyj/J9A6+BO6ePq8Msr9JWD8/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAun1svsKVpj9dgdM+iY+NPhqR3r6Qblg/7i0Rv5mqxT/W7Zo9a6SGvqfhv786aGs/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAC4Yuw9fVSjP51DSz40kfU94uaivv7VRT6JBQU/Bdu2vlo9Gz+3vZU8WOB6PBnUHrtuOyK+qmDKP8n0Dr7gjlm9lBVnPaGVEr4E7p4+rwyyv0lYPz+SmDk9tU7TPLKEaT2UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.11542267 1.2760159 0.19850011]\n [ 0.5196157 -0.35713974 0.6064049 ]\n [-0.15842983 1.581075 -0.13960566]\n [ 0.31040967 -1.3910121 0.7474409 ]]", "desired_goal": "[[-0.23094836 1.3014452 0.41309634]\n [ 0.2764857 -0.4347008 0.84543705]\n [-0.5671071 1.5442687 0.07564895]\n [-0.26297316 -1.4990739 0.9195591 ]]", "observation": "[[ 0.11542267 1.2760159 0.19850011 0.11990586 -0.31816775 0.19319913]\n [ 0.5196157 -0.35713974 0.6064049 0.01827894 0.01531228 -0.00242353]\n [-0.15842983 1.581075 -0.13960566 -0.05311477 0.05641706 -0.14314891]\n [ 0.31040967 -1.3910121 0.7474409 0.04531152 0.02579437 0.05701131]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA+8AWPpiR9T3vT3o9cMuPPSSdEb2iKG8+ko7bPUlwybvweoc9S/invbFtIDz84uA8lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.14722054 0.1199066 0.06111139]\n [ 0.07021224 -0.03555025 0.23355344]\n [ 0.10720553 -0.00614742 0.06615245]\n [-0.08201655 0.00979178 0.02745198]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.64644, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIkJ4ih4ib4L+UhpRSlIwBbJRLMowBdJRHQJEYBHPNVzZ1fZQoaAZoCWgPQwhSSDKrdzjmv5SGlFKUaBVLMmgWR0CRF4KWszVMdX2UKGgGaAloD0MInMWLhSFy1b+UhpRSlGgVSzJoFkdAkRcC6pYLcHV9lChoBmgJaA9DCEYnS633G9W/lIaUUpRoFUsyaBZHQJEWf1YhdMV1fZQoaAZoCWgPQwjVrglpjUHev5SGlFKUaBVLMmgWR0CRGl5qubI+dX2UKGgGaAloD0MI6X+5Fi1A07+UhpRSlGgVSzJoFkdAkRncxwhnrnV9lChoBmgJaA9DCJCeIoeIm+u/lIaUUpRoFUsyaBZHQJEZXOPeYUp1fZQoaAZoCWgPQwjufD81Xrrjv5SGlFKUaBVLMmgWR0CRGNlHjIaMdX2UKGgGaAloD0MI91eP+1br17+UhpRSlGgVSzJoFkdAkRyX225QQHV9lChoBmgJaA9DCCR9WkV/aNO/lIaUUpRoFUsyaBZHQJEcFgXuVop1fZQoaAZoCWgPQwhTsMbZdATav5SGlFKUaBVLMmgWR0CRG5XHim2tdX2UKGgGaAloD0MIIAw89x4u6r+UhpRSlGgVSzJoFkdAkRsSAxzq8nV9lChoBmgJaA9DCBd/2xMktuq/lIaUUpRoFUsyaBZHQJEe6QgcLjR1fZQoaAZoCWgPQwgD0Chd+pfav5SGlFKUaBVLMmgWR0CRHmdnkDISdX2UKGgGaAloD0MI7lpCPujZ2L+UhpRSlGgVSzJoFkdAkR3nl4keIXV9lChoBmgJaA9DCKIOK9zyEeS/lIaUUpRoFUsyaBZHQJEdY65oXbd1fZQoaAZoCWgPQwiMaDum7krjv5SGlFKUaBVLMmgWR0CRInsE7nxKdX2UKGgGaAloD0MIxZCcTNyq47+UhpRSlGgVSzJoFkdAkSH7BTGYKXV9lChoBmgJaA9DCFxWYTPABe+/lIaUUpRoFUsyaBZHQJEhfQrtmcx1fZQoaAZoCWgPQwihEWxc/67ev5SGlFKUaBVLMmgWR0CRIPtITXardX2UKGgGaAloD0MIDypxHeOK3b+UhpRSlGgVSzJoFkdAkSZRYvFm4HV9lChoBmgJaA9DCBxg5jv4iea/lIaUUpRoFUsyaBZHQJEl0qBmPHV1fZQoaAZoCWgPQwiXxcTm41rmv5SGlFKUaBVLMmgWR0CRJVSMLncMdX2UKGgGaAloD0MIYOrnTUUq5r+UhpRSlGgVSzJoFkdAkSTSRSxZ+3V9lChoBmgJaA9DCMFz7+GS49i/lIaUUpRoFUsyaBZHQJEqt63RXwN1fZQoaAZoCWgPQwjxK9Zwkfvlv5SGlFKUaBVLMmgWR0CRKjp97WupdX2UKGgGaAloD0MInDI334hu77+UhpRSlGgVSzJoFkdAkSm8pTdcjnV9lChoBmgJaA9DCBe5p6s7Fuu/lIaUUpRoFUsyaBZHQJEpOjsUqQR1fZQoaAZoCWgPQwjtndFWJRHuv5SGlFKUaBVLMmgWR0CRLs0/4ZdfdX2UKGgGaAloD0MIguMybmoAAMCUhpRSlGgVSzJoFkdAkS5NnbqQinV9lChoBmgJaA9DCMFTyJV6Ft2/lIaUUpRoFUsyaBZHQJEtz5SFXaJ1fZQoaAZoCWgPQwgBamrZWt/kv5SGlFKUaBVLMmgWR0CRLU3mV7hOdX2UKGgGaAloD0MISutvCcC/7b+UhpRSlGgVSzJoFkdAkTL7ApKBd3V9lChoBmgJaA9DCCs0EMtmDvW/lIaUUpRoFUsyaBZHQJEye7voePt1fZQoaAZoCWgPQwhtdM5PcVzzv5SGlFKUaBVLMmgWR0CRMf3UQTVUdX2UKGgGaAloD0MIWf0RhgHL47+UhpRSlGgVSzJoFkdAkTF79VFQVXV9lChoBmgJaA9DCLVsrS8S2ui/lIaUUpRoFUsyaBZHQJE2h94NZvF1fZQoaAZoCWgPQwicpPljWpvbv5SGlFKUaBVLMmgWR0CRNgXoTwlTdX2UKGgGaAloD0MIxSCwcmgR4r+UhpRSlGgVSzJoFkdAkTWF+Zw4sHV9lChoBmgJaA9DCAouVtRgWvS/lIaUUpRoFUsyaBZHQJE1AiPhhph1fZQoaAZoCWgPQwiI9xxYjhDiv5SGlFKUaBVLMmgWR0CROPs052hadX2UKGgGaAloD0MIXRd+cD5147+UhpRSlGgVSzJoFkdAkTh5IlMRH3V9lChoBmgJaA9DCDp2UInrmOe/lIaUUpRoFUsyaBZHQJE3+PV/c351fZQoaAZoCWgPQwg9DRgkfZr0v5SGlFKUaBVLMmgWR0CRN3Ty8SPEdX2UKGgGaAloD0MIajNOQ1Th/r+UhpRSlGgVSzJoFkdAkTtO8K5TZXV9lChoBmgJaA9DCFrz4y8t6uy/lIaUUpRoFUsyaBZHQJE6zSQYDT11fZQoaAZoCWgPQwiuRnalZUQBwJSGlFKUaBVLMmgWR0CROk12JSBLdX2UKGgGaAloD0MI2CssuB9w7L+UhpRSlGgVSzJoFkdAkTnJyIYWL3V9lChoBmgJaA9DCLQh/8wgPua/lIaUUpRoFUsyaBZHQJE9lVU+9rZ1fZQoaAZoCWgPQwj3zJIANbXhv5SGlFKUaBVLMmgWR0CRPROXVsk6dX2UKGgGaAloD0MI9n04SIiy97+UhpRSlGgVSzJoFkdAkTyTe9Ba93V9lChoBmgJaA9DCFAcQL/v3/i/lIaUUpRoFUsyaBZHQJE8D4DcM3J1fZQoaAZoCWgPQwiTc2IP7WPov5SGlFKUaBVLMmgWR0CRQAHVwxWUdX2UKGgGaAloD0MIGFxzR//L8b+UhpRSlGgVSzJoFkdAkT+AGOdXk3V9lChoBmgJaA9DCBdky/J1GeK/lIaUUpRoFUsyaBZHQJE/AE6kqMF1fZQoaAZoCWgPQwi8lLpkHIMAwJSGlFKUaBVLMmgWR0CRPn1FH8TBdX2UKGgGaAloD0MI+yR32ERm9r+UhpRSlGgVSzJoFkdAkUKFb/wRXnV9lChoBmgJaA9DCCKJXkax3O+/lIaUUpRoFUsyaBZHQJFCA62fChx1fZQoaAZoCWgPQwhO7+L9uP0AwJSGlFKUaBVLMmgWR0CRQYVEd/8VdX2UKGgGaAloD0MI2Lyqs1pg9L+UhpRSlGgVSzJoFkdAkUEB4+r2g3V9lChoBmgJaA9DCOWdQxmqovi/lIaUUpRoFUsyaBZHQJFE0ZBLPD51fZQoaAZoCWgPQwiPi2oRUUzxv5SGlFKUaBVLMmgWR0CRRE/z8P4EdX2UKGgGaAloD0MI7DAm/b1U9b+UhpRSlGgVSzJoFkdAkUPP5k9U0nV9lChoBmgJaA9DCKZ8CKpGb/i/lIaUUpRoFUsyaBZHQJFDTKV6eGx1fZQoaAZoCWgPQwjcaABvgQQHwJSGlFKUaBVLMmgWR0CRRxc5bQkYdX2UKGgGaAloD0MIbOo8Kv4v/L+UhpRSlGgVSzJoFkdAkUaVu76HkHV9lChoBmgJaA9DCOIC0Chd+uO/lIaUUpRoFUsyaBZHQJFGFbmlqJx1fZQoaAZoCWgPQwgdHy3OGKYBwJSGlFKUaBVLMmgWR0CRRZG2CulodX2UKGgGaAloD0MIoYSZtn8lCcCUhpRSlGgVSzJoFkdAkUljF2mpEXV9lChoBmgJaA9DCADHnj2XafG/lIaUUpRoFUsyaBZHQJFI4Rf4REp1fZQoaAZoCWgPQwgSv2INF/n6v5SGlFKUaBVLMmgWR0CRSGFDv3JxdX2UKGgGaAloD0MIBcHj27sG7r+UhpRSlGgVSzJoFkdAkUfdY4hllXV9lChoBmgJaA9DCJdyvth7cea/lIaUUpRoFUsyaBZHQJFLy8L8aXN1fZQoaAZoCWgPQwgdAHFXr+L5v5SGlFKUaBVLMmgWR0CRS0n4O+ZgdX2UKGgGaAloD0MIvYxiuaVV7b+UhpRSlGgVSzJoFkdAkUrKQeV9nnV9lChoBmgJaA9DCOscA7LXO/G/lIaUUpRoFUsyaBZHQJFKRoysS011fZQoaAZoCWgPQwj2CgvuB5wEwJSGlFKUaBVLMmgWR0CRThf/3nIRdX2UKGgGaAloD0MI4lzDDI0n7b+UhpRSlGgVSzJoFkdAkU2WITGo73V9lChoBmgJaA9DCIf4hy09Gu2/lIaUUpRoFUsyaBZHQJFNFkDp1Rt1fZQoaAZoCWgPQwj8UdSZe8juv5SGlFKUaBVLMmgWR0CRTJJu2qkudX2UKGgGaAloD0MI7ib4pumz9L+UhpRSlGgVSzJoFkdAkVBliF0xM3V9lChoBmgJaA9DCCS1UDI5dfO/lIaUUpRoFUsyaBZHQJFP4/HHWBl1fZQoaAZoCWgPQwg2j8Ng/gryv5SGlFKUaBVLMmgWR0CRT2Qnx8UmdX2UKGgGaAloD0MILnJPV3esAMCUhpRSlGgVSzJoFkdAkU7gbdadMHV9lChoBmgJaA9DCFYsflNYafq/lIaUUpRoFUsyaBZHQJFSrefqX4V1fZQoaAZoCWgPQwgebLHbZ5Xjv5SGlFKUaBVLMmgWR0CRUiwosqaxdX2UKGgGaAloD0MIZqAy/n3G7r+UhpRSlGgVSzJoFkdAkVGsDjin53V9lChoBmgJaA9DCGyTisbavw/AlIaUUpRoFUsyaBZHQJFRKDM/yG11fZQoaAZoCWgPQwiYpghwetf8v5SGlFKUaBVLMmgWR0CRVRDCgsbvdX2UKGgGaAloD0MI4X8r2bERD8CUhpRSlGgVSzJoFkdAkVSO1KGtZHV9lChoBmgJaA9DCElnYORljQPAlIaUUpRoFUsyaBZHQJFUDpMYdhl1fZQoaAZoCWgPQwjK+WLvxbcQwJSGlFKUaBVLMmgWR0CRU4qCHymRdX2UKGgGaAloD0MIVcITev2pAcCUhpRSlGgVSzJoFkdAkVdUZ3s5XHV9lChoBmgJaA9DCHu8kA4PIQPAlIaUUpRoFUsyaBZHQJFW0pd8iOh1fZQoaAZoCWgPQwh16V+SylT+v5SGlFKUaBVLMmgWR0CRVlLy+YdAdX2UKGgGaAloD0MIiSMPRBbp7b+UhpRSlGgVSzJoFkdAkVXPN7jT8nV9lChoBmgJaA9DCM2spYC0/+m/lIaUUpRoFUsyaBZHQJFZ0AzYVZd1fZQoaAZoCWgPQwjUKvpDM0/7v5SGlFKUaBVLMmgWR0CRWU6Mzdk8dX2UKGgGaAloD0MIS+ZY3lVvAsCUhpRSlGgVSzJoFkdAkVjO3QUpNXV9lChoBmgJaA9DCCGVYkfj0Py/lIaUUpRoFUsyaBZHQJFYSymhufp1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 17678, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (277 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -2.6508987170178444, "std_reward": 1.1780833180302568, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-14T15:56:52.745941"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:152e16d7a44ff7fdcbd96fc74f56dd4e8e859d517402a40f2cbcfb413e3717e1
3
+ size 3056