Initial commit
Browse files- README.md +37 -0
- a2c-PandaReachDense-v2-3.zip +3 -0
- a2c-PandaReachDense-v2-3/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v2-3/data +96 -0
- a2c-PandaReachDense-v2-3/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v2-3/policy.pth +3 -0
- a2c-PandaReachDense-v2-3/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v2-3/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v2
|
16 |
+
type: PandaReachDense-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -0.45 +/- 0.12
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v2**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v2-3.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:73f278afcb63628b4ffb520aa60e40d4deba10102371d6bbb71ecfe61bf03412
|
3 |
+
size 109530
|
a2c-PandaReachDense-v2-3/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-PandaReachDense-v2-3/data
ADDED
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f67cc0d20d0>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc_data object at 0x7f67cc0cb6c0>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
15 |
+
"log_std_init": -2,
|
16 |
+
"ortho_init": false,
|
17 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
18 |
+
"optimizer_kwargs": {
|
19 |
+
"alpha": 0.99,
|
20 |
+
"eps": 1e-05,
|
21 |
+
"weight_decay": 0
|
22 |
+
}
|
23 |
+
},
|
24 |
+
"observation_space": {
|
25 |
+
":type:": "<class 'gym.spaces.dict.Dict'>",
|
26 |
+
":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
|
27 |
+
"spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
|
28 |
+
"_shape": null,
|
29 |
+
"dtype": null,
|
30 |
+
"_np_random": null
|
31 |
+
},
|
32 |
+
"action_space": {
|
33 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
34 |
+
":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
35 |
+
"dtype": "float32",
|
36 |
+
"_shape": [
|
37 |
+
3
|
38 |
+
],
|
39 |
+
"low": "[-1. -1. -1.]",
|
40 |
+
"high": "[1. 1. 1.]",
|
41 |
+
"bounded_below": "[ True True True]",
|
42 |
+
"bounded_above": "[ True True True]",
|
43 |
+
"_np_random": null
|
44 |
+
},
|
45 |
+
"n_envs": 4,
|
46 |
+
"num_timesteps": 500000,
|
47 |
+
"_total_timesteps": 500000,
|
48 |
+
"_num_timesteps_at_start": 0,
|
49 |
+
"seed": null,
|
50 |
+
"action_noise": null,
|
51 |
+
"start_time": 1676904827105983897,
|
52 |
+
"learning_rate": 0.00076,
|
53 |
+
"tensorboard_log": null,
|
54 |
+
"lr_schedule": {
|
55 |
+
":type:": "<class 'function'>",
|
56 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/SOdXko4MnoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
57 |
+
},
|
58 |
+
"_last_obs": {
|
59 |
+
":type:": "<class 'collections.OrderedDict'>",
|
60 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAq03TPm3A1L0M9x0/q03TPm3A1L0M9x0/q03TPm3A1L0M9x0/q03TPm3A1L0M9x0/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAM6u7v5JAMj/SbH2/GqO4vhD9nz+F3rC/2t2Vv0W9dj8xmHs/O47mPh0q1r95nG6/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACrTdM+bcDUvQz3HT+Crjw9GUkvvCbTYD2rTdM+bcDUvQz3HT+Crjw9GUkvvCbTYD2rTdM+bcDUvQz3HT+Crjw9GUkvvCbTYD2rTdM+bcDUvQz3HT+Crjw9GUkvvCbTYD2UaA5LBEsGhpRoEnSUUpR1Lg==",
|
61 |
+
"achieved_goal": "[[ 0.41270193 -0.10388265 0.6170509 ]\n [ 0.41270193 -0.10388265 0.6170509 ]\n [ 0.41270193 -0.10388265 0.6170509 ]\n [ 0.41270193 -0.10388265 0.6170509 ]]",
|
62 |
+
"desired_goal": "[[-1.4661621 0.69629776 -0.9899417 ]\n [-0.36061937 1.2499104 -1.3817908 ]\n [-1.1708329 0.9638255 0.982791 ]\n [ 0.45030388 -1.6731602 -0.9320751 ]]",
|
63 |
+
"observation": "[[ 0.41270193 -0.10388265 0.6170509 0.04606486 -0.01069858 0.05488887]\n [ 0.41270193 -0.10388265 0.6170509 0.04606486 -0.01069858 0.05488887]\n [ 0.41270193 -0.10388265 0.6170509 0.04606486 -0.01069858 0.05488887]\n [ 0.41270193 -0.10388265 0.6170509 0.04606486 -0.01069858 0.05488887]]"
|
64 |
+
},
|
65 |
+
"_last_episode_starts": {
|
66 |
+
":type:": "<class 'numpy.ndarray'>",
|
67 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
68 |
+
},
|
69 |
+
"_last_original_obs": {
|
70 |
+
":type:": "<class 'collections.OrderedDict'>",
|
71 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA2ujIPXFUu71Hjyo+2IZYPJ7MqDkiPJE+OVX1vScRsb3ugZI+syj1PEqq1L2+sBE+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
72 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
73 |
+
"desired_goal": "[[ 0.09810038 -0.09146965 0.16656218]\n [ 0.01321574 0.00032196 0.2836619 ]\n [-0.11979146 -0.0864585 0.28614753]\n [ 0.02992663 -0.10384043 0.14227578]]",
|
74 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
75 |
+
},
|
76 |
+
"_episode_num": 0,
|
77 |
+
"use_sde": true,
|
78 |
+
"sde_sample_freq": -1,
|
79 |
+
"_current_progress_remaining": 0.0,
|
80 |
+
"ep_info_buffer": {
|
81 |
+
":type:": "<class 'collections.deque'>",
|
82 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIFyzVBbzM5L+UhpRSlIwBbJRLMowBdJRHQJqvzu4PPLR1fZQoaAZoCWgPQwhREaeTbHXfv5SGlFKUaBVLMmgWR0Car1Q66reZdX2UKGgGaAloD0MIsmfPZWoS37+UhpRSlGgVSzJoFkdAmq7Yw22oenV9lChoBmgJaA9DCGyvBb03ht+/lIaUUpRoFUsyaBZHQJquXrHEMsp1fZQoaAZoCWgPQwiyZmSQu4jmv5SGlFKUaBVLMmgWR0CatHW56MR6dX2UKGgGaAloD0MITTEHQUerzL+UhpRSlGgVSzJoFkdAmrP7jo6jnHV9lChoBmgJaA9DCK4SLA5nftK/lIaUUpRoFUsyaBZHQJqzgBV+7UZ1fZQoaAZoCWgPQwhlijkIOlrbv5SGlFKUaBVLMmgWR0CaswXxOLzgdX2UKGgGaAloD0MIQL/v37w4vb+UhpRSlGgVSzJoFkdAmrgnSnccl3V9lChoBmgJaA9DCOj3/ZsXp+K/lIaUUpRoFUsyaBZHQJq3rLhaTwF1fZQoaAZoCWgPQwhIbHcP0H3ev5SGlFKUaBVLMmgWR0CatzGRmseXdX2UKGgGaAloD0MIQUrs2t5u0r+UhpRSlGgVSzJoFkdAmra2/vfCRHV9lChoBmgJaA9DCKAYWTLH8ua/lIaUUpRoFUsyaBZHQJq8EfKZDzB1fZQoaAZoCWgPQwjWcmcmGM7Rv5SGlFKUaBVLMmgWR0Cau5d07r9mdX2UKGgGaAloD0MIl1ZD4h5L3L+UhpRSlGgVSzJoFkdAmrsbRfF72XV9lChoBmgJaA9DCI6u0t11Nty/lIaUUpRoFUsyaBZHQJq6oSOBDoh1fZQoaAZoCWgPQwgZHCWvzjHqv5SGlFKUaBVLMmgWR0CawEuGsV+JdX2UKGgGaAloD0MIkL5J06Bo27+UhpRSlGgVSzJoFkdAmr/RdyDIzXV9lChoBmgJaA9DCN8Xl6q0xdC/lIaUUpRoFUsyaBZHQJq/VM6BAfN1fZQoaAZoCWgPQwgaTwRxHk7mv5SGlFKUaBVLMmgWR0Cavtq59Vm0dX2UKGgGaAloD0MInIwqw7gb5b+UhpRSlGgVSzJoFkdAmsRwRsdkrnV9lChoBmgJaA9DCGh23VuRmNC/lIaUUpRoFUsyaBZHQJrD9mrbQC11fZQoaAZoCWgPQwgBFvn1Q2zMv5SGlFKUaBVLMmgWR0Caw3tAs053dX2UKGgGaAloD0MIIGEYsOQq2b+UhpRSlGgVSzJoFkdAmsMBlQMx5HV9lChoBmgJaA9DCPn3GRcOhNO/lIaUUpRoFUsyaBZHQJrHl6kZaV51fZQoaAZoCWgPQwj4xDpVvmfMv5SGlFKUaBVLMmgWR0Caxxs052hadX2UKGgGaAloD0MIQSswZHWr37+UhpRSlGgVSzJoFkdAmsads7+1jXV9lChoBmgJaA9DCMCxZ89latG/lIaUUpRoFUsyaBZHQJrGIZ9/jKh1fZQoaAZoCWgPQwhZbmk1JO7Nv5SGlFKUaBVLMmgWR0CaycFF2FFldX2UKGgGaAloD0MIn3O366Up67+UhpRSlGgVSzJoFkdAmslEoScslXV9lChoBmgJaA9DCO8a9KW3P96/lIaUUpRoFUsyaBZHQJrIxwHZ9NN1fZQoaAZoCWgPQwjO34RCBJzsv5SGlFKUaBVLMmgWR0CayEsEJSiudX2UKGgGaAloD0MIdsO2RZmN47+UhpRSlGgVSzJoFkdAmsv34O+ZgHV9lChoBmgJaA9DCG/1nPS+8eO/lIaUUpRoFUsyaBZHQJrLfG3nZCh1fZQoaAZoCWgPQwiuYYbGE0Hyv5SGlFKUaBVLMmgWR0Cayv7OE/SqdX2UKGgGaAloD0MIkQn4NZKE6L+UhpRSlGgVSzJoFkdAmsqCoS+QEXV9lChoBmgJaA9DCFA4u7VMht6/lIaUUpRoFUsyaBZHQJrONIRRMvh1fZQoaAZoCWgPQwgNVTGVfsLTv5SGlFKUaBVLMmgWR0Cazbgbp/wzdX2UKGgGaAloD0MIETY8vVKW6r+UhpRSlGgVSzJoFkdAms06q4pc5nV9lChoBmgJaA9DCI8dVOI6xuK/lIaUUpRoFUsyaBZHQJrMvtWuHN51fZQoaAZoCWgPQwg1KQXdXtLKv5SGlFKUaBVLMmgWR0Ca0IQ+UyHmdX2UKGgGaAloD0MIluzYCMTrwL+UhpRSlGgVSzJoFkdAmtAH/cWTHXV9lChoBmgJaA9DCMAGRIgrZ92/lIaUUpRoFUsyaBZHQJrPiogmqo91fZQoaAZoCWgPQwiAK9mxEYjcv5SGlFKUaBVLMmgWR0Cazw7NSqEOdX2UKGgGaAloD0MIrp6T3je+5r+UhpRSlGgVSzJoFkdAmtMUnkT6BXV9lChoBmgJaA9DCK37x0J0SPK/lIaUUpRoFUsyaBZHQJrSmdVea8Z1fZQoaAZoCWgPQwgguMoTCDvNv5SGlFKUaBVLMmgWR0Ca0hwRoRI0dX2UKGgGaAloD0MILQlQU8sW8r+UhpRSlGgVSzJoFkdAmtGgSWZ7X3V9lChoBmgJaA9DCAPOUrKchOi/lIaUUpRoFUsyaBZHQJrVS43FUAF1fZQoaAZoCWgPQwjWjuIcdXTuv5SGlFKUaBVLMmgWR0Ca1M7q6e5GdX2UKGgGaAloD0MIPUSjO4id17+UhpRSlGgVSzJoFkdAmtRQ57w8XHV9lChoBmgJaA9DCFwf1hu1wuO/lIaUUpRoFUsyaBZHQJrT1LM9r451fZQoaAZoCWgPQwhtjJ3wEpzYv5SGlFKUaBVLMmgWR0Ca19hrWRRudX2UKGgGaAloD0MI5j+k374O6b+UhpRSlGgVSzJoFkdAmtdcPBi1A3V9lChoBmgJaA9DCG7CvTJv1dW/lIaUUpRoFUsyaBZHQJrW3wnYxtZ1fZQoaAZoCWgPQwhLAWn/A6zuv5SGlFKUaBVLMmgWR0Ca1mNwiqyXdX2UKGgGaAloD0MIyThGskeozb+UhpRSlGgVSzJoFkdAmtoxc3VConV9lChoBmgJaA9DCN6wbVFmg96/lIaUUpRoFUsyaBZHQJrZtbfP5YZ1fZQoaAZoCWgPQwi/SGjLuRTav5SGlFKUaBVLMmgWR0Ca2TnGbTc7dX2UKGgGaAloD0MIDp4JTRLL4L+UhpRSlGgVSzJoFkdAmti/lhgE2nV9lChoBmgJaA9DCMwNhjqs8OK/lIaUUpRoFUsyaBZHQJrcV1U2kzp1fZQoaAZoCWgPQwjpmsk329zfv5SGlFKUaBVLMmgWR0Ca29qJdjXndX2UKGgGaAloD0MIQEtXsI3447+UhpRSlGgVSzJoFkdAmttcXrMTvnV9lChoBmgJaA9DCByz7Elgc+W/lIaUUpRoFUsyaBZHQJra38Jlar51fZQoaAZoCWgPQwgNxR1v8lviv5SGlFKUaBVLMmgWR0Ca3t07KaG6dX2UKGgGaAloD0MIe0s5X+y98b+UhpRSlGgVSzJoFkdAmt5gmzByj3V9lChoBmgJaA9DCDlGskeomei/lIaUUpRoFUsyaBZHQJrd4sqaw2V1fZQoaAZoCWgPQwi4j9yadFvrv5SGlFKUaBVLMmgWR0Ca3Wal1r6+dX2UKGgGaAloD0MIzy10JQLV1b+UhpRSlGgVSzJoFkdAmuEjiS7oS3V9lChoBmgJaA9DCJYgI6DCEdW/lIaUUpRoFUsyaBZHQJrgp2C/XXl1fZQoaAZoCWgPQwgw1cxaCkjgv5SGlFKUaBVLMmgWR0Ca4Cn0kGA1dX2UKGgGaAloD0MIpibBG9Ko6r+UhpRSlGgVSzJoFkdAmt+tnTRYzXV9lChoBmgJaA9DCJjArbt5qtC/lIaUUpRoFUsyaBZHQJrjZRXOnl51fZQoaAZoCWgPQwjhQbPr3orjv5SGlFKUaBVLMmgWR0Ca4uj6N2kjdX2UKGgGaAloD0MISbw8nSvK57+UhpRSlGgVSzJoFkdAmuJrQPZqVXV9lChoBmgJaA9DCFWKHY1DfeO/lIaUUpRoFUsyaBZHQJrh73qRlpZ1fZQoaAZoCWgPQwguqkVEMXnhv5SGlFKUaBVLMmgWR0Ca5df0mMOxdX2UKGgGaAloD0MIKnCyDdyB5b+UhpRSlGgVSzJoFkdAmuVbgKnei3V9lChoBmgJaA9DCNBHGXEBaOe/lIaUUpRoFUsyaBZHQJrk3mZE2Hd1fZQoaAZoCWgPQwihgy7h0Fvhv5SGlFKUaBVLMmgWR0Ca5GNfPX05dX2UKGgGaAloD0MI7Z+nAYOk4b+UhpRSlGgVSzJoFkdAmuhMTi83/HV9lChoBmgJaA9DCOaw+47hsdq/lIaUUpRoFUsyaBZHQJrnz9ycTal1fZQoaAZoCWgPQwiK52wBofXjv5SGlFKUaBVLMmgWR0Ca51JP69CedX2UKGgGaAloD0MIuagWEcXk6b+UhpRSlGgVSzJoFkdAmubWkep4r3V9lChoBmgJaA9DCBQIO8WqQcy/lIaUUpRoFUsyaBZHQJrqlCdBjWl1fZQoaAZoCWgPQwgv4GWGjbLOv5SGlFKUaBVLMmgWR0Ca6hkgOjIrdX2UKGgGaAloD0MIZARUOIJUxr+UhpRSlGgVSzJoFkdAmumc72criHV9lChoBmgJaA9DCCh+jLlrieS/lIaUUpRoFUsyaBZHQJrpIxfv4M51fZQoaAZoCWgPQwj9hokGKXjUv5SGlFKUaBVLMmgWR0Ca7RKtPpIMdX2UKGgGaAloD0MI3lflQuVf1b+UhpRSlGgVSzJoFkdAmuyWpAD7qXV9lChoBmgJaA9DCAPN59ztet2/lIaUUpRoFUsyaBZHQJrsGRr8BMl1fZQoaAZoCWgPQwgFMjuL3iniv5SGlFKUaBVLMmgWR0Ca651Ng0CSdX2UKGgGaAloD0MImIbhI2JK5b+UhpRSlGgVSzJoFkdAmvACZSeiBXV9lChoBmgJaA9DCL9GkiBcAeK/lIaUUpRoFUsyaBZHQJrvh+vyLAJ1fZQoaAZoCWgPQwgdyHpq9dXiv5SGlFKUaBVLMmgWR0Ca7wwjMV1wdX2UKGgGaAloD0MIlUT2QZYF4b+UhpRSlGgVSzJoFkdAmu6R9G7SRnV9lChoBmgJaA9DCEYiNIKNa+a/lIaUUpRoFUsyaBZHQJr0Oq94/u91fZQoaAZoCWgPQwgmVdtN8E3lv5SGlFKUaBVLMmgWR0Ca88C+UQkHdX2UKGgGaAloD0MIAFXcuMV84b+UhpRSlGgVSzJoFkdAmvNEX531SXV9lChoBmgJaA9DCEX2QZYFE+C/lIaUUpRoFUsyaBZHQJryySmqHXV1ZS4="
|
83 |
+
},
|
84 |
+
"ep_success_buffer": {
|
85 |
+
":type:": "<class 'collections.deque'>",
|
86 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
87 |
+
},
|
88 |
+
"_n_updates": 15625,
|
89 |
+
"n_steps": 8,
|
90 |
+
"gamma": 0.98,
|
91 |
+
"gae_lambda": 0.9,
|
92 |
+
"ent_coef": 0.0,
|
93 |
+
"vf_coef": 0.4,
|
94 |
+
"max_grad_norm": 0.5,
|
95 |
+
"normalize_advantage": false
|
96 |
+
}
|
a2c-PandaReachDense-v2-3/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2299b79f79bb94b610ba26452ef7cf3386f93980e88e839250fa3907b3e1dabf
|
3 |
+
size 45438
|
a2c-PandaReachDense-v2-3/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bd921259982559cea644ed891cba7536766d82df7740b71cfee08f10d2d66f94
|
3 |
+
size 46718
|
a2c-PandaReachDense-v2-3/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaReachDense-v2-3/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.21.6
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f67cc0d20d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f67cc0cb6c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 500000, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1676904827105983897, "learning_rate": 0.00076, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/SOdXko4MnoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAq03TPm3A1L0M9x0/q03TPm3A1L0M9x0/q03TPm3A1L0M9x0/q03TPm3A1L0M9x0/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAM6u7v5JAMj/SbH2/GqO4vhD9nz+F3rC/2t2Vv0W9dj8xmHs/O47mPh0q1r95nG6/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACrTdM+bcDUvQz3HT+Crjw9GUkvvCbTYD2rTdM+bcDUvQz3HT+Crjw9GUkvvCbTYD2rTdM+bcDUvQz3HT+Crjw9GUkvvCbTYD2rTdM+bcDUvQz3HT+Crjw9GUkvvCbTYD2UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.41270193 -0.10388265 0.6170509 ]\n [ 0.41270193 -0.10388265 0.6170509 ]\n [ 0.41270193 -0.10388265 0.6170509 ]\n [ 0.41270193 -0.10388265 0.6170509 ]]", "desired_goal": "[[-1.4661621 0.69629776 -0.9899417 ]\n [-0.36061937 1.2499104 -1.3817908 ]\n [-1.1708329 0.9638255 0.982791 ]\n [ 0.45030388 -1.6731602 -0.9320751 ]]", "observation": "[[ 0.41270193 -0.10388265 0.6170509 0.04606486 -0.01069858 0.05488887]\n [ 0.41270193 -0.10388265 0.6170509 0.04606486 -0.01069858 0.05488887]\n [ 0.41270193 -0.10388265 0.6170509 0.04606486 -0.01069858 0.05488887]\n [ 0.41270193 -0.10388265 0.6170509 0.04606486 -0.01069858 0.05488887]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA2ujIPXFUu71Hjyo+2IZYPJ7MqDkiPJE+OVX1vScRsb3ugZI+syj1PEqq1L2+sBE+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.09810038 -0.09146965 0.16656218]\n [ 0.01321574 0.00032196 0.2836619 ]\n [-0.11979146 -0.0864585 0.28614753]\n [ 0.02992663 -0.10384043 0.14227578]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIFyzVBbzM5L+UhpRSlIwBbJRLMowBdJRHQJqvzu4PPLR1fZQoaAZoCWgPQwhREaeTbHXfv5SGlFKUaBVLMmgWR0Car1Q66reZdX2UKGgGaAloD0MIsmfPZWoS37+UhpRSlGgVSzJoFkdAmq7Yw22oenV9lChoBmgJaA9DCGyvBb03ht+/lIaUUpRoFUsyaBZHQJquXrHEMsp1fZQoaAZoCWgPQwiyZmSQu4jmv5SGlFKUaBVLMmgWR0CatHW56MR6dX2UKGgGaAloD0MITTEHQUerzL+UhpRSlGgVSzJoFkdAmrP7jo6jnHV9lChoBmgJaA9DCK4SLA5nftK/lIaUUpRoFUsyaBZHQJqzgBV+7UZ1fZQoaAZoCWgPQwhlijkIOlrbv5SGlFKUaBVLMmgWR0CaswXxOLzgdX2UKGgGaAloD0MIQL/v37w4vb+UhpRSlGgVSzJoFkdAmrgnSnccl3V9lChoBmgJaA9DCOj3/ZsXp+K/lIaUUpRoFUsyaBZHQJq3rLhaTwF1fZQoaAZoCWgPQwhIbHcP0H3ev5SGlFKUaBVLMmgWR0CatzGRmseXdX2UKGgGaAloD0MIQUrs2t5u0r+UhpRSlGgVSzJoFkdAmra2/vfCRHV9lChoBmgJaA9DCKAYWTLH8ua/lIaUUpRoFUsyaBZHQJq8EfKZDzB1fZQoaAZoCWgPQwjWcmcmGM7Rv5SGlFKUaBVLMmgWR0Cau5d07r9mdX2UKGgGaAloD0MIl1ZD4h5L3L+UhpRSlGgVSzJoFkdAmrsbRfF72XV9lChoBmgJaA9DCI6u0t11Nty/lIaUUpRoFUsyaBZHQJq6oSOBDoh1fZQoaAZoCWgPQwgZHCWvzjHqv5SGlFKUaBVLMmgWR0CawEuGsV+JdX2UKGgGaAloD0MIkL5J06Bo27+UhpRSlGgVSzJoFkdAmr/RdyDIzXV9lChoBmgJaA9DCN8Xl6q0xdC/lIaUUpRoFUsyaBZHQJq/VM6BAfN1fZQoaAZoCWgPQwgaTwRxHk7mv5SGlFKUaBVLMmgWR0Cavtq59Vm0dX2UKGgGaAloD0MInIwqw7gb5b+UhpRSlGgVSzJoFkdAmsRwRsdkrnV9lChoBmgJaA9DCGh23VuRmNC/lIaUUpRoFUsyaBZHQJrD9mrbQC11fZQoaAZoCWgPQwgBFvn1Q2zMv5SGlFKUaBVLMmgWR0Caw3tAs053dX2UKGgGaAloD0MIIGEYsOQq2b+UhpRSlGgVSzJoFkdAmsMBlQMx5HV9lChoBmgJaA9DCPn3GRcOhNO/lIaUUpRoFUsyaBZHQJrHl6kZaV51fZQoaAZoCWgPQwj4xDpVvmfMv5SGlFKUaBVLMmgWR0Caxxs052hadX2UKGgGaAloD0MIQSswZHWr37+UhpRSlGgVSzJoFkdAmsads7+1jXV9lChoBmgJaA9DCMCxZ89latG/lIaUUpRoFUsyaBZHQJrGIZ9/jKh1fZQoaAZoCWgPQwhZbmk1JO7Nv5SGlFKUaBVLMmgWR0CaycFF2FFldX2UKGgGaAloD0MIn3O366Up67+UhpRSlGgVSzJoFkdAmslEoScslXV9lChoBmgJaA9DCO8a9KW3P96/lIaUUpRoFUsyaBZHQJrIxwHZ9NN1fZQoaAZoCWgPQwjO34RCBJzsv5SGlFKUaBVLMmgWR0CayEsEJSiudX2UKGgGaAloD0MIdsO2RZmN47+UhpRSlGgVSzJoFkdAmsv34O+ZgHV9lChoBmgJaA9DCG/1nPS+8eO/lIaUUpRoFUsyaBZHQJrLfG3nZCh1fZQoaAZoCWgPQwiuYYbGE0Hyv5SGlFKUaBVLMmgWR0Cayv7OE/SqdX2UKGgGaAloD0MIkQn4NZKE6L+UhpRSlGgVSzJoFkdAmsqCoS+QEXV9lChoBmgJaA9DCFA4u7VMht6/lIaUUpRoFUsyaBZHQJrONIRRMvh1fZQoaAZoCWgPQwgNVTGVfsLTv5SGlFKUaBVLMmgWR0Cazbgbp/wzdX2UKGgGaAloD0MIETY8vVKW6r+UhpRSlGgVSzJoFkdAms06q4pc5nV9lChoBmgJaA9DCI8dVOI6xuK/lIaUUpRoFUsyaBZHQJrMvtWuHN51fZQoaAZoCWgPQwg1KQXdXtLKv5SGlFKUaBVLMmgWR0Ca0IQ+UyHmdX2UKGgGaAloD0MIluzYCMTrwL+UhpRSlGgVSzJoFkdAmtAH/cWTHXV9lChoBmgJaA9DCMAGRIgrZ92/lIaUUpRoFUsyaBZHQJrPiogmqo91fZQoaAZoCWgPQwiAK9mxEYjcv5SGlFKUaBVLMmgWR0Cazw7NSqEOdX2UKGgGaAloD0MIrp6T3je+5r+UhpRSlGgVSzJoFkdAmtMUnkT6BXV9lChoBmgJaA9DCK37x0J0SPK/lIaUUpRoFUsyaBZHQJrSmdVea8Z1fZQoaAZoCWgPQwgguMoTCDvNv5SGlFKUaBVLMmgWR0Ca0hwRoRI0dX2UKGgGaAloD0MILQlQU8sW8r+UhpRSlGgVSzJoFkdAmtGgSWZ7X3V9lChoBmgJaA9DCAPOUrKchOi/lIaUUpRoFUsyaBZHQJrVS43FUAF1fZQoaAZoCWgPQwjWjuIcdXTuv5SGlFKUaBVLMmgWR0Ca1M7q6e5GdX2UKGgGaAloD0MIPUSjO4id17+UhpRSlGgVSzJoFkdAmtRQ57w8XHV9lChoBmgJaA9DCFwf1hu1wuO/lIaUUpRoFUsyaBZHQJrT1LM9r451fZQoaAZoCWgPQwhtjJ3wEpzYv5SGlFKUaBVLMmgWR0Ca19hrWRRudX2UKGgGaAloD0MI5j+k374O6b+UhpRSlGgVSzJoFkdAmtdcPBi1A3V9lChoBmgJaA9DCG7CvTJv1dW/lIaUUpRoFUsyaBZHQJrW3wnYxtZ1fZQoaAZoCWgPQwhLAWn/A6zuv5SGlFKUaBVLMmgWR0Ca1mNwiqyXdX2UKGgGaAloD0MIyThGskeozb+UhpRSlGgVSzJoFkdAmtoxc3VConV9lChoBmgJaA9DCN6wbVFmg96/lIaUUpRoFUsyaBZHQJrZtbfP5YZ1fZQoaAZoCWgPQwi/SGjLuRTav5SGlFKUaBVLMmgWR0Ca2TnGbTc7dX2UKGgGaAloD0MIDp4JTRLL4L+UhpRSlGgVSzJoFkdAmti/lhgE2nV9lChoBmgJaA9DCMwNhjqs8OK/lIaUUpRoFUsyaBZHQJrcV1U2kzp1fZQoaAZoCWgPQwjpmsk329zfv5SGlFKUaBVLMmgWR0Ca29qJdjXndX2UKGgGaAloD0MIQEtXsI3447+UhpRSlGgVSzJoFkdAmttcXrMTvnV9lChoBmgJaA9DCByz7Elgc+W/lIaUUpRoFUsyaBZHQJra38Jlar51fZQoaAZoCWgPQwgNxR1v8lviv5SGlFKUaBVLMmgWR0Ca3t07KaG6dX2UKGgGaAloD0MIe0s5X+y98b+UhpRSlGgVSzJoFkdAmt5gmzByj3V9lChoBmgJaA9DCDlGskeomei/lIaUUpRoFUsyaBZHQJrd4sqaw2V1fZQoaAZoCWgPQwi4j9yadFvrv5SGlFKUaBVLMmgWR0Ca3Wal1r6+dX2UKGgGaAloD0MIzy10JQLV1b+UhpRSlGgVSzJoFkdAmuEjiS7oS3V9lChoBmgJaA9DCJYgI6DCEdW/lIaUUpRoFUsyaBZHQJrgp2C/XXl1fZQoaAZoCWgPQwgw1cxaCkjgv5SGlFKUaBVLMmgWR0Ca4Cn0kGA1dX2UKGgGaAloD0MIpibBG9Ko6r+UhpRSlGgVSzJoFkdAmt+tnTRYzXV9lChoBmgJaA9DCJjArbt5qtC/lIaUUpRoFUsyaBZHQJrjZRXOnl51fZQoaAZoCWgPQwjhQbPr3orjv5SGlFKUaBVLMmgWR0Ca4uj6N2kjdX2UKGgGaAloD0MISbw8nSvK57+UhpRSlGgVSzJoFkdAmuJrQPZqVXV9lChoBmgJaA9DCFWKHY1DfeO/lIaUUpRoFUsyaBZHQJrh73qRlpZ1fZQoaAZoCWgPQwguqkVEMXnhv5SGlFKUaBVLMmgWR0Ca5df0mMOxdX2UKGgGaAloD0MIKnCyDdyB5b+UhpRSlGgVSzJoFkdAmuVbgKnei3V9lChoBmgJaA9DCNBHGXEBaOe/lIaUUpRoFUsyaBZHQJrk3mZE2Hd1fZQoaAZoCWgPQwihgy7h0Fvhv5SGlFKUaBVLMmgWR0Ca5GNfPX05dX2UKGgGaAloD0MI7Z+nAYOk4b+UhpRSlGgVSzJoFkdAmuhMTi83/HV9lChoBmgJaA9DCOaw+47hsdq/lIaUUpRoFUsyaBZHQJrnz9ycTal1fZQoaAZoCWgPQwiK52wBofXjv5SGlFKUaBVLMmgWR0Ca51JP69CedX2UKGgGaAloD0MIuagWEcXk6b+UhpRSlGgVSzJoFkdAmubWkep4r3V9lChoBmgJaA9DCBQIO8WqQcy/lIaUUpRoFUsyaBZHQJrqlCdBjWl1fZQoaAZoCWgPQwgv4GWGjbLOv5SGlFKUaBVLMmgWR0Ca6hkgOjIrdX2UKGgGaAloD0MIZARUOIJUxr+UhpRSlGgVSzJoFkdAmumc72criHV9lChoBmgJaA9DCCh+jLlrieS/lIaUUpRoFUsyaBZHQJrpIxfv4M51fZQoaAZoCWgPQwj9hokGKXjUv5SGlFKUaBVLMmgWR0Ca7RKtPpIMdX2UKGgGaAloD0MI3lflQuVf1b+UhpRSlGgVSzJoFkdAmuyWpAD7qXV9lChoBmgJaA9DCAPN59ztet2/lIaUUpRoFUsyaBZHQJrsGRr8BMl1fZQoaAZoCWgPQwgFMjuL3iniv5SGlFKUaBVLMmgWR0Ca651Ng0CSdX2UKGgGaAloD0MImIbhI2JK5b+UhpRSlGgVSzJoFkdAmvACZSeiBXV9lChoBmgJaA9DCL9GkiBcAeK/lIaUUpRoFUsyaBZHQJrvh+vyLAJ1fZQoaAZoCWgPQwgdyHpq9dXiv5SGlFKUaBVLMmgWR0Ca7wwjMV1wdX2UKGgGaAloD0MIlUT2QZYF4b+UhpRSlGgVSzJoFkdAmu6R9G7SRnV9lChoBmgJaA9DCEYiNIKNa+a/lIaUUpRoFUsyaBZHQJr0Oq94/u91fZQoaAZoCWgPQwgmVdtN8E3lv5SGlFKUaBVLMmgWR0Ca88C+UQkHdX2UKGgGaAloD0MIAFXcuMV84b+UhpRSlGgVSzJoFkdAmvNEX531SXV9lChoBmgJaA9DCEX2QZYFE+C/lIaUUpRoFUsyaBZHQJryySmqHXV1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 15625, "n_steps": 8, "gamma": 0.98, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (277 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -0.45437603152822703, "std_reward": 0.12086913871483307, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-20T15:25:01.939222"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d6c252fabeec288e7936ceeaee3778cd73582358f2a163f14d4a271dddcc1598
|
3 |
+
size 3056
|