frangiral commited on
Commit
431443c
1 Parent(s): 8caa5df

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1229.15 +/- 87.30
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:044f67fbd230ebfd91457ad64383b27842847faa4c5fa0f2ed6e9cfe166096b9
3
+ size 129260
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f3a451efee0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3a451eff70>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f3a451f5040>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3a451f50d0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f3a451f5160>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f3a451f51f0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f3a451f5280>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3a451f5310>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f3a451f53a0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3a451f5430>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f3a451f54c0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3a451f5550>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f3a451e8ab0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "observation_space": {
36
+ ":type:": "<class 'gym.spaces.box.Box'>",
37
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
38
+ "dtype": "float32",
39
+ "_shape": [
40
+ 28
41
+ ],
42
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
43
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
44
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
46
+ "_np_random": null
47
+ },
48
+ "action_space": {
49
+ ":type:": "<class 'gym.spaces.box.Box'>",
50
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
51
+ "dtype": "float32",
52
+ "_shape": [
53
+ 8
54
+ ],
55
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
56
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
57
+ "bounded_below": "[ True True True True True True True True]",
58
+ "bounded_above": "[ True True True True True True True True]",
59
+ "_np_random": null
60
+ },
61
+ "n_envs": 4,
62
+ "num_timesteps": 1000000,
63
+ "_total_timesteps": 1000000,
64
+ "_num_timesteps_at_start": 0,
65
+ "seed": null,
66
+ "action_noise": null,
67
+ "start_time": 1676386990675730222,
68
+ "learning_rate": 0.00096,
69
+ "tensorboard_log": null,
70
+ "lr_schedule": {
71
+ ":type:": "<class 'function'>",
72
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
73
+ },
74
+ "_last_obs": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAMQDDT6VsXs/IuYDPQ+NGD/2/b6/t6YlwGe8vL5Q/qO/9MMvv7xiID9dgXg//V6bPxRC976C+zG/QWJfP663NT+RX8w/8g7ru9h6nz1hkJE/8Rq7v4JJrj+SXUE/9YGZv/SBOz9MKdI+zMEawENTJz/6blg/z2ThPv4T7j5NIv8/I8GsvwytMb9rpTS/r6iTv5JWhj+hQqU/9u7zPigfcT/K6I2/m4zuvvJGGT8+feG/HIxyv0KKy76YunE9cvW6P/MzDj8DntW9hYZfv57z3D70gTs/TCnSPgW90z6M1cO/SX+HP3Kviz8iHMS9c+CFPqiHrj9NvBs/ISBnPyK7gb+ZE1K/Mr4dvxk0yb51nYU/T9uJvgz2xTp/XHe/VKT5PSNtTL86low/NfsxP5ZYTb9gzpu+NY8kv8ovLz8CRaw5bMGuv0wp0j4FvdM+Q1MnP8FM573B458++EwFPxRCU7/YTxM/6Pt0PqdSFr9PhwHAD0gzPgtrgz4JbVo/dlhPPi/n1L8HRY0+UFODP6X06Txbd8w/8S1nvCnREL4HxLE+FTcpvtg5LECTCa8/WmE4wPSBOz9MKdI+Bb3TPozVw7+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
+ },
78
+ "_last_episode_starts": {
79
+ ":type:": "<class 'numpy.ndarray'>",
80
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
81
+ },
82
+ "_last_original_obs": {
83
+ ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADJw1G2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAH9X+uwAAAAC3p/+/AAAAAK15mr0AAAAARwfjPwAAAAAxQxm9AAAAAElh5j8AAAAAJNYXPQAAAABzr/+/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUx4FtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgJJ81zwAAAAAvRPwvwAAAAC4qAW+AAAAALCQ4z8AAAAA2kypPQAAAADle+8/AAAAABaumTwAAAAAsDr6vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADFgT7YAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICPBcs9AAAAADaf8r8AAAAAsOWLuwAAAABgPP8/AAAAAMtUpD0AAAAAXrzoPwAAAAAuQeg9AAAAAHW+378AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAU9ag2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAJxN4vAAAAAAx3uW/AAAAAAhuCT4AAAAAndb1PwAAAAB4F/+8AAAAAD6S5T8AAAAAt7bbvQAAAACGLuG/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
+ },
86
+ "_episode_num": 0,
87
+ "use_sde": true,
88
+ "sde_sample_freq": -1,
89
+ "_current_progress_remaining": 0.0,
90
+ "ep_info_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJTF7oA4n4SMAWyUTegDjAF0lEdAobqo04zabnV9lChoBkdAlUZFschkiGgHTegDaAhHQKG/KAIY3vR1fZQoaAZHQJQXsR/ViF1oB03oA2gIR0Chv0DgIhQndX2UKGgGR0CUTH/bTMJQaAdN6ANoCEdAob+g4GUwBnV9lChoBkdAlaA5yp71I2gHTegDaAhHQKHHpt4RmK91fZQoaAZHQJX4IqVhTfloB03oA2gIR0Chy7cscyWSdX2UKGgGR0CTw6raufVaaAdN6ANoCEdAocvXZmI0qHV9lChoBkdAlJcMzZYgaGgHTegDaAhHQKHMN531SO11fZQoaAZHQJYaRnoPkJdoB03oA2gIR0Ch1s4b83uNdX2UKGgGR0CWCzKdhAnlaAdN6ANoCEdAodyDDZUT+XV9lChoBkdAlPQLiVB2OmgHTegDaAhHQKHcnZW7voh1fZQoaAZHQJMHQCp3os9oB03oA2gIR0Ch3Ppi7TUidX2UKGgGR0CR4zUM5OrRaAdN6ANoCEdAoeUJPoFFD3V9lChoBkdAlOSvukUKzGgHTegDaAhHQKHpNuNPxhF1fZQoaAZHQJVB8o8ZDRdoB03oA2gIR0Ch6VDfNzKcdX2UKGgGR0CXK+RkEs8QaAdN6ANoCEdAoemzdadMCnV9lChoBkdAlox51Ng0CWgHTegDaAhHQKHzLbs4T9N1fZQoaAZHQJQyrnJT2nNoB03oA2gIR0Ch+fMhX8wYdX2UKGgGR0CXgsctXgccaAdN6ANoCEdAofohflZHNHV9lChoBkdAkxETKT0QLGgHTegDaAhHQKH6ojdHlOp1fZQoaAZHQI5cpUgjhUBoB03oA2gIR0CiAsqn3ta7dX2UKGgGR0CWFCC+UQkHaAdN6ANoCEdAogbgC6pYLnV9lChoBkdAlSCY11nuiWgHTegDaAhHQKIHAPzWf9R1fZQoaAZHQJewx22XsxBoB03oA2gIR0CiB2Y9HMEBdX2UKGgGR0CVqCbvgFX8aAdN6ANoCEdAohA0nqmj03V9lChoBkdAkvggeFL39WgHTegDaAhHQKIW2t03fhx1fZQoaAZHQJUVfkYGdI5oB03oA2gIR0CiFwkQXhwVdX2UKGgGR0CW7OtDlYEGaAdN6ANoCEdAoheiI55qunV9lChoBkdAlRcJ1mrbQGgHTegDaAhHQKIgu0E5hjR1fZQoaAZHQJNOEpYs/Y9oB03oA2gIR0CiJLbrcCYDdX2UKGgGR0CT+dCPp6hQaAdN6ANoCEdAoiTPAoG6gHV9lChoBkdAlGThkVeruWgHTegDaAhHQKIlKhr30wt1fZQoaAZHQJHquj1wo9doB03oA2gIR0CiLRuSwGGEdX2UKGgGR0CUJwo99tuUaAdN6ANoCEdAojK8MgEEDHV9lChoBkdAlE0reANG3GgHTegDaAhHQKIy6DTz/ZN1fZQoaAZHQJPO599c8kloB03oA2gIR0CiM4SFGoaUdX2UKGgGR0CSSX4qgAZLaAdN6ANoCEdAoj39Lg4wRHV9lChoBkdAkO4V/6O5rmgHTegDaAhHQKJCGu/UONJ1fZQoaAZHQJOQ8I5YHPhoB03oA2gIR0CiQjgNwzcidX2UKGgGR0CRCf+SKWLQaAdN6ANoCEdAokKTR8c+7nV9lChoBkdAk49cLv1DjWgHTegDaAhHQKJKcMxXXAd1fZQoaAZHQJTKv/S6UaBoB03oA2gIR0CiTy54W1twdX2UKGgGR0CU6ddat9x7aAdN6ANoCEdAok9ZLZi/f3V9lChoBkdAjcv8/MW43GgHTegDaAhHQKJP8Awwj+t1fZQoaAZHQIP9SOR1X/5oB03oA2gIR0CiW5WRaHKwdX2UKGgGR0CUSSxPO6d2aAdN6ANoCEdAol+lcIJJG3V9lChoBkdAlLEaSTyJ9GgHTegDaAhHQKJfwGD+R5l1fZQoaAZHQJTbJ7b+Lm9oB03oA2gIR0CiYBgTqSowdX2UKGgGR0CGBPWsijcmaAdN6ANoCEdAomg0hcJMQHV9lChoBkdAkheq/qPfbmgHTegDaAhHQKJsWB2fTTh1fZQoaAZHQJSfdsnAqNJoB03oA2gIR0CibHLeIl+mdX2UKGgGR0CRMb8b70nPaAdN6ANoCEdAomzSA4GUwHV9lChoBkdAk7cQCCBf8mgHTegDaAhHQKJ5RqqOtGN1fZQoaAZHQJXH++lCTlloB03oA2gIR0CifWxBVuJldX2UKGgGR0CUS/pNbkfcaAdN6ANoCEdAon2KCFsYVXV9lChoBkdAlGBEofCAMGgHTegDaAhHQKJ95l7MPjJ1fZQoaAZHQIrDwxFiKBNoB03oA2gIR0CihiPRzBAOdX2UKGgGR0CRZI+r2g3+aAdN6ANoCEdAoopgVM23rnV9lChoBkdAkhYJFkQPJGgHTegDaAhHQKKKezOX3QF1fZQoaAZHQJECNXzUZvVoB03oA2gIR0Ciituuq3mWdX2UKGgGR0CUb2WDHwPRaAdN6ANoCEdAopcMNe+mFnV9lChoBkdAlR5mwmmcfGgHTegDaAhHQKKbkE+Pikx1fZQoaAZHQJMUARtgrpdoB03oA2gIR0Cim61xbSqmdX2UKGgGR0CRMXsKb8WLaAdN6ANoCEdAopwJpeu3dHV9lChoBkdAkknjbSJCSmgHTegDaAhHQKKkK3uuzQh1fZQoaAZHQJELvvDxb0RoB03oA2gIR0CiqDHerMkhdX2UKGgGR0CSyM3Td+G5aAdN6ANoCEdAoqhKgf2bonV9lChoBkdAk/cMGX5WR2gHTegDaAhHQKKoq/Tspod1fZQoaAZHQJXXb2EkB0ZoB03oA2gIR0Cis+OQZGaydX2UKGgGR0CVGp54nndPaAdN6ANoCEdAorlk8JUo8nV9lChoBkdAkY7QnUlRg2gHTegDaAhHQKK5gg7HQyB1fZQoaAZHQJMw+oBJZntoB03oA2gIR0CiueCx/ustdX2UKGgGR0CUkyEgW8AaaAdN6ANoCEdAosIPD3ueBnV9lChoBkdAjBRky1uzhWgHTegDaAhHQKLGSxmCiAV1fZQoaAZHQI4vxNsWO6xoB03oA2gIR0CixmUhvBJqdX2UKGgGR0CUaFtQKrq/aAdN6ANoCEdAosbDdnCfpXV9lChoBkdAkE0ivPkaM2gHTegDaAhHQKLQs0j1PFh1fZQoaAZHQJDC/omois5oB03oA2gIR0Ci11NhmXgMdX2UKGgGR0CV9C7iADq4aAdN6ANoCEdAotdtb7j1f3V9lChoBkdAlWygh8pkPWgHTegDaAhHQKLXzB1LamJ1fZQoaAZHQJN6Ch24d6toB03oA2gIR0Ci4BiGN70GdX2UKGgGR0CVyBU9pyp8aAdN6ANoCEdAouQ3Pqs2enV9lChoBkdAlW5rPQfIS2gHTegDaAhHQKLkUY5T6zp1fZQoaAZHQIm73oPkJa9oB03oA2gIR0Ci5K7FCLMtdX2UKGgGR0CUwkY8uBczaAdN6ANoCEdAou3aPjn3c3V9lChoBkdAlITgyVObiWgHTegDaAhHQKL0jb6guh91fZQoaAZHQJSYYtBfKIVoB03oA2gIR0Ci9L9WyTpxdX2UKGgGR0CVF4Y+0PYnaAdN6ANoCEdAovVi8cuJ13V9lChoBkdAkOn0+HJtBWgHTegDaAhHQKL9zj7Q9id1fZQoaAZHQJW39zo2XLNoB03oA2gIR0CjAeXvphWpdX2UKGgGR0CUlRNBF/hEaAdN6ANoCEdAowH/u1F6RnV9lChoBkdAlWgnJDE3sGgHTegDaAhHQKMCXQpF1CB1fZQoaAZHQJR2AD9wWFhoB03oA2gIR0CjCy7iZOSGdX2UKGgGR0CTOOmtyPuHaAdN6ANoCEdAoxG60WuX/3V9lChoBkdAlc7YzabnYGgHTegDaAhHQKMR5rEcbR51fZQoaAZHQJP1PTZxrBVoB03oA2gIR0CjEo2JSBK+dX2UKGgGR0CUClyvcJt0aAdN6ANoCEdAoxwV8qnWKHV9lChoBkdAk4OLq+rU9mgHTegDaAhHQKMgRUNrj5t1fZQoaAZHQJIdrT/hl19oB03oA2gIR0CjIGEU9IPLdX2UKGgGR0CT8OMx46fbaAdN6ANoCEdAoyDCT2WY4XVlLg=="
93
+ },
94
+ "ep_success_buffer": {
95
+ ":type:": "<class 'collections.deque'>",
96
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
+ },
98
+ "_n_updates": 31250,
99
+ "n_steps": 8,
100
+ "gamma": 0.99,
101
+ "gae_lambda": 0.9,
102
+ "ent_coef": 0.0,
103
+ "vf_coef": 0.4,
104
+ "max_grad_norm": 0.5,
105
+ "normalize_advantage": false
106
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:da7584e175a6f2ace2c28431907451092e6264bfd3c9573f65f5432eeda87b46
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:81d5f3b79bb59bd15d1b3c4ba45dd1776b93998bb91c234efa4e24a000617622
3
+ size 56958
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f3a451efee0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3a451eff70>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f3a451f5040>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3a451f50d0>", "_build": "<function ActorCriticPolicy._build at 0x7f3a451f5160>", "forward": "<function ActorCriticPolicy.forward at 0x7f3a451f51f0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f3a451f5280>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3a451f5310>", "_predict": "<function ActorCriticPolicy._predict at 0x7f3a451f53a0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3a451f5430>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f3a451f54c0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3a451f5550>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f3a451e8ab0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1676386990675730222, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAMQDDT6VsXs/IuYDPQ+NGD/2/b6/t6YlwGe8vL5Q/qO/9MMvv7xiID9dgXg//V6bPxRC976C+zG/QWJfP663NT+RX8w/8g7ru9h6nz1hkJE/8Rq7v4JJrj+SXUE/9YGZv/SBOz9MKdI+zMEawENTJz/6blg/z2ThPv4T7j5NIv8/I8GsvwytMb9rpTS/r6iTv5JWhj+hQqU/9u7zPigfcT/K6I2/m4zuvvJGGT8+feG/HIxyv0KKy76YunE9cvW6P/MzDj8DntW9hYZfv57z3D70gTs/TCnSPgW90z6M1cO/SX+HP3Kviz8iHMS9c+CFPqiHrj9NvBs/ISBnPyK7gb+ZE1K/Mr4dvxk0yb51nYU/T9uJvgz2xTp/XHe/VKT5PSNtTL86low/NfsxP5ZYTb9gzpu+NY8kv8ovLz8CRaw5bMGuv0wp0j4FvdM+Q1MnP8FM573B458++EwFPxRCU7/YTxM/6Pt0PqdSFr9PhwHAD0gzPgtrgz4JbVo/dlhPPi/n1L8HRY0+UFODP6X06Txbd8w/8S1nvCnREL4HxLE+FTcpvtg5LECTCa8/WmE4wPSBOz9MKdI+Bb3TPozVw7+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADJw1G2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAH9X+uwAAAAC3p/+/AAAAAK15mr0AAAAARwfjPwAAAAAxQxm9AAAAAElh5j8AAAAAJNYXPQAAAABzr/+/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUx4FtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgJJ81zwAAAAAvRPwvwAAAAC4qAW+AAAAALCQ4z8AAAAA2kypPQAAAADle+8/AAAAABaumTwAAAAAsDr6vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADFgT7YAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICPBcs9AAAAADaf8r8AAAAAsOWLuwAAAABgPP8/AAAAAMtUpD0AAAAAXrzoPwAAAAAuQeg9AAAAAHW+378AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAU9ag2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAJxN4vAAAAAAx3uW/AAAAAAhuCT4AAAAAndb1PwAAAAB4F/+8AAAAAD6S5T8AAAAAt7bbvQAAAACGLuG/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJTF7oA4n4SMAWyUTegDjAF0lEdAobqo04zabnV9lChoBkdAlUZFschkiGgHTegDaAhHQKG/KAIY3vR1fZQoaAZHQJQXsR/ViF1oB03oA2gIR0Chv0DgIhQndX2UKGgGR0CUTH/bTMJQaAdN6ANoCEdAob+g4GUwBnV9lChoBkdAlaA5yp71I2gHTegDaAhHQKHHpt4RmK91fZQoaAZHQJX4IqVhTfloB03oA2gIR0Chy7cscyWSdX2UKGgGR0CTw6raufVaaAdN6ANoCEdAocvXZmI0qHV9lChoBkdAlJcMzZYgaGgHTegDaAhHQKHMN531SO11fZQoaAZHQJYaRnoPkJdoB03oA2gIR0Ch1s4b83uNdX2UKGgGR0CWCzKdhAnlaAdN6ANoCEdAodyDDZUT+XV9lChoBkdAlPQLiVB2OmgHTegDaAhHQKHcnZW7voh1fZQoaAZHQJMHQCp3os9oB03oA2gIR0Ch3Ppi7TUidX2UKGgGR0CR4zUM5OrRaAdN6ANoCEdAoeUJPoFFD3V9lChoBkdAlOSvukUKzGgHTegDaAhHQKHpNuNPxhF1fZQoaAZHQJVB8o8ZDRdoB03oA2gIR0Ch6VDfNzKcdX2UKGgGR0CXK+RkEs8QaAdN6ANoCEdAoemzdadMCnV9lChoBkdAlox51Ng0CWgHTegDaAhHQKHzLbs4T9N1fZQoaAZHQJQyrnJT2nNoB03oA2gIR0Ch+fMhX8wYdX2UKGgGR0CXgsctXgccaAdN6ANoCEdAofohflZHNHV9lChoBkdAkxETKT0QLGgHTegDaAhHQKH6ojdHlOp1fZQoaAZHQI5cpUgjhUBoB03oA2gIR0CiAsqn3ta7dX2UKGgGR0CWFCC+UQkHaAdN6ANoCEdAogbgC6pYLnV9lChoBkdAlSCY11nuiWgHTegDaAhHQKIHAPzWf9R1fZQoaAZHQJewx22XsxBoB03oA2gIR0CiB2Y9HMEBdX2UKGgGR0CVqCbvgFX8aAdN6ANoCEdAohA0nqmj03V9lChoBkdAkvggeFL39WgHTegDaAhHQKIW2t03fhx1fZQoaAZHQJUVfkYGdI5oB03oA2gIR0CiFwkQXhwVdX2UKGgGR0CW7OtDlYEGaAdN6ANoCEdAoheiI55qunV9lChoBkdAlRcJ1mrbQGgHTegDaAhHQKIgu0E5hjR1fZQoaAZHQJNOEpYs/Y9oB03oA2gIR0CiJLbrcCYDdX2UKGgGR0CT+dCPp6hQaAdN6ANoCEdAoiTPAoG6gHV9lChoBkdAlGThkVeruWgHTegDaAhHQKIlKhr30wt1fZQoaAZHQJHquj1wo9doB03oA2gIR0CiLRuSwGGEdX2UKGgGR0CUJwo99tuUaAdN6ANoCEdAojK8MgEEDHV9lChoBkdAlE0reANG3GgHTegDaAhHQKIy6DTz/ZN1fZQoaAZHQJPO599c8kloB03oA2gIR0CiM4SFGoaUdX2UKGgGR0CSSX4qgAZLaAdN6ANoCEdAoj39Lg4wRHV9lChoBkdAkO4V/6O5rmgHTegDaAhHQKJCGu/UONJ1fZQoaAZHQJOQ8I5YHPhoB03oA2gIR0CiQjgNwzcidX2UKGgGR0CRCf+SKWLQaAdN6ANoCEdAokKTR8c+7nV9lChoBkdAk49cLv1DjWgHTegDaAhHQKJKcMxXXAd1fZQoaAZHQJTKv/S6UaBoB03oA2gIR0CiTy54W1twdX2UKGgGR0CU6ddat9x7aAdN6ANoCEdAok9ZLZi/f3V9lChoBkdAjcv8/MW43GgHTegDaAhHQKJP8Awwj+t1fZQoaAZHQIP9SOR1X/5oB03oA2gIR0CiW5WRaHKwdX2UKGgGR0CUSSxPO6d2aAdN6ANoCEdAol+lcIJJG3V9lChoBkdAlLEaSTyJ9GgHTegDaAhHQKJfwGD+R5l1fZQoaAZHQJTbJ7b+Lm9oB03oA2gIR0CiYBgTqSowdX2UKGgGR0CGBPWsijcmaAdN6ANoCEdAomg0hcJMQHV9lChoBkdAkheq/qPfbmgHTegDaAhHQKJsWB2fTTh1fZQoaAZHQJSfdsnAqNJoB03oA2gIR0CibHLeIl+mdX2UKGgGR0CRMb8b70nPaAdN6ANoCEdAomzSA4GUwHV9lChoBkdAk7cQCCBf8mgHTegDaAhHQKJ5RqqOtGN1fZQoaAZHQJXH++lCTlloB03oA2gIR0CifWxBVuJldX2UKGgGR0CUS/pNbkfcaAdN6ANoCEdAon2KCFsYVXV9lChoBkdAlGBEofCAMGgHTegDaAhHQKJ95l7MPjJ1fZQoaAZHQIrDwxFiKBNoB03oA2gIR0CihiPRzBAOdX2UKGgGR0CRZI+r2g3+aAdN6ANoCEdAoopgVM23rnV9lChoBkdAkhYJFkQPJGgHTegDaAhHQKKKezOX3QF1fZQoaAZHQJECNXzUZvVoB03oA2gIR0Ciituuq3mWdX2UKGgGR0CUb2WDHwPRaAdN6ANoCEdAopcMNe+mFnV9lChoBkdAlR5mwmmcfGgHTegDaAhHQKKbkE+Pikx1fZQoaAZHQJMUARtgrpdoB03oA2gIR0Cim61xbSqmdX2UKGgGR0CRMXsKb8WLaAdN6ANoCEdAopwJpeu3dHV9lChoBkdAkknjbSJCSmgHTegDaAhHQKKkK3uuzQh1fZQoaAZHQJELvvDxb0RoB03oA2gIR0CiqDHerMkhdX2UKGgGR0CSyM3Td+G5aAdN6ANoCEdAoqhKgf2bonV9lChoBkdAk/cMGX5WR2gHTegDaAhHQKKoq/Tspod1fZQoaAZHQJXXb2EkB0ZoB03oA2gIR0Cis+OQZGaydX2UKGgGR0CVGp54nndPaAdN6ANoCEdAorlk8JUo8nV9lChoBkdAkY7QnUlRg2gHTegDaAhHQKK5gg7HQyB1fZQoaAZHQJMw+oBJZntoB03oA2gIR0CiueCx/ustdX2UKGgGR0CUkyEgW8AaaAdN6ANoCEdAosIPD3ueBnV9lChoBkdAjBRky1uzhWgHTegDaAhHQKLGSxmCiAV1fZQoaAZHQI4vxNsWO6xoB03oA2gIR0CixmUhvBJqdX2UKGgGR0CUaFtQKrq/aAdN6ANoCEdAosbDdnCfpXV9lChoBkdAkE0ivPkaM2gHTegDaAhHQKLQs0j1PFh1fZQoaAZHQJDC/omois5oB03oA2gIR0Ci11NhmXgMdX2UKGgGR0CV9C7iADq4aAdN6ANoCEdAotdtb7j1f3V9lChoBkdAlWygh8pkPWgHTegDaAhHQKLXzB1LamJ1fZQoaAZHQJN6Ch24d6toB03oA2gIR0Ci4BiGN70GdX2UKGgGR0CVyBU9pyp8aAdN6ANoCEdAouQ3Pqs2enV9lChoBkdAlW5rPQfIS2gHTegDaAhHQKLkUY5T6zp1fZQoaAZHQIm73oPkJa9oB03oA2gIR0Ci5K7FCLMtdX2UKGgGR0CUwkY8uBczaAdN6ANoCEdAou3aPjn3c3V9lChoBkdAlITgyVObiWgHTegDaAhHQKL0jb6guh91fZQoaAZHQJSYYtBfKIVoB03oA2gIR0Ci9L9WyTpxdX2UKGgGR0CVF4Y+0PYnaAdN6ANoCEdAovVi8cuJ13V9lChoBkdAkOn0+HJtBWgHTegDaAhHQKL9zj7Q9id1fZQoaAZHQJW39zo2XLNoB03oA2gIR0CjAeXvphWpdX2UKGgGR0CUlRNBF/hEaAdN6ANoCEdAowH/u1F6RnV9lChoBkdAlWgnJDE3sGgHTegDaAhHQKMCXQpF1CB1fZQoaAZHQJR2AD9wWFhoB03oA2gIR0CjCy7iZOSGdX2UKGgGR0CTOOmtyPuHaAdN6ANoCEdAoxG60WuX/3V9lChoBkdAlc7YzabnYGgHTegDaAhHQKMR5rEcbR51fZQoaAZHQJP1PTZxrBVoB03oA2gIR0CjEo2JSBK+dX2UKGgGR0CUClyvcJt0aAdN6ANoCEdAoxwV8qnWKHV9lChoBkdAk4OLq+rU9mgHTegDaAhHQKMgRUNrj5t1fZQoaAZHQJIdrT/hl19oB03oA2gIR0CjIGEU9IPLdX2UKGgGR0CT8OMx46fbaAdN6ANoCEdAoyDCT2WY4XVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 31250, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (956 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1229.145795293071, "std_reward": 87.30392321482235, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-14T15:35:12.441273"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0f6bfcec10bce97c9bc8168870e6b5289a868890bb7381ad14caa529d507816e
3
+ size 2136