fractalego commited on
Commit
75a48cb
·
1 Parent(s): c67dfe8

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +58 -0
README.md ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ## Introduction
2
+ This is a zero-shot relation extractor based on the paper [Exploring the zero-shot limit of FewRel](https://www.aclweb.org/anthology/2020.coling-main.124).
3
+
4
+ ##
5
+ Installation
6
+ ```bash
7
+ $ pip install zero-shot-re
8
+ ```
9
+
10
+ ## Run the Extractor
11
+ ```python
12
+ from transformers import AutoModel, AutoTokenizer
13
+ from zero-shot-re import RelationExtractor
14
+
15
+ model = AutoModel.from_pretrained("fractalego/fewrel-zero-shot")
16
+ tokenizer = AutoTokenizer.from_pretrained("fractalego/fewrel-zero-shot")
17
+
18
+ relations = ['noble title', 'founding date', 'occupation of a person']
19
+ extractor = RelationExtractor(model, tokenizer, relations)
20
+ ranked_rels = extractor.rank(text='John Smith received an OBE', head='John Smith', tail='OBE')
21
+ print(ranked_rels)
22
+ ```
23
+ with results
24
+ ```python3
25
+ [('noble title', 0.9690611883997917),
26
+ ('occupation of a person', 0.0012609362602233887),
27
+ ('founding date', 0.00024014711380004883)]
28
+ ```
29
+
30
+ ## Accuracy
31
+ The results as in the paper are
32
+
33
+ | Model | 0-shot 5-ways | 0-shot 10-ways |
34
+ |------------------------|--------------|----------------|
35
+ |(1) Distillbert |70.1±0.5 | 55.9±0.6 |
36
+ |(2) Bert Large |80.8±0.4 | 69.6±0.5 |
37
+ |(3) Distillbert + SQUAD |81.3±0.4 | 70.0±0.2 |
38
+ |(4) Bert Large + SQUAD |86.0±0.6 | 76.2±0.4 |
39
+
40
+ This version uses the (4) Bert Large + SQUAD model
41
+
42
+ ## Cite as
43
+ ```bibtex
44
+ @inproceedings{cetoli-2020-exploring,
45
+ title = "Exploring the zero-shot limit of {F}ew{R}el",
46
+ author = "Cetoli, Alberto",
47
+ booktitle = "Proceedings of the 28th International Conference on Computational Linguistics",
48
+ month = dec,
49
+ year = "2020",
50
+ address = "Barcelona, Spain (Online)",
51
+ publisher = "International Committee on Computational Linguistics",
52
+ url = "https://www.aclweb.org/anthology/2020.coling-main.124",
53
+ doi = "10.18653/v1/2020.coling-main.124",
54
+ pages = "1447--1451",
55
+ abstract = "This paper proposes a general purpose relation extractor that uses Wikidata descriptions to represent the relation{'}s surface form. The results are tested on the FewRel 1.0 dataset, which provides an excellent framework for training and evaluating the proposed zero-shot learning system in English. This relation extractor architecture exploits the implicit knowledge of a language model through a question-answering approach.",
56
+ }
57
+ ```
58
+