|
import torch |
|
import transformers |
|
from transformers import ViTModel |
|
import torch |
|
from torch import nn |
|
import transformers |
|
from transformers import PreTrainedModel |
|
|
|
class EEGViTAutoModel(PreTrainedModel): |
|
config_class = transformers.ViTConfig |
|
|
|
def __init__(self, config=None): |
|
if config is None: |
|
config = transformers.ViTConfig() |
|
super().__init__(config) |
|
self.model = EEGViT_pretrained() |
|
|
|
class EEGViT_pretrained(nn.Module): |
|
def __init__(self): |
|
super().__init__() |
|
self.conv1 = nn.Conv2d( |
|
in_channels=1, |
|
out_channels=256, |
|
kernel_size=(1, 36), |
|
stride=(1, 36), |
|
padding=(0,2), |
|
bias=False |
|
) |
|
self.batchnorm1 = nn.BatchNorm2d(256, False) |
|
model_name = "google/vit-base-patch16-224" |
|
config = transformers.ViTConfig.from_pretrained(model_name) |
|
config.update({'num_channels': 256}) |
|
config.update({'image_size': (129,14)}) |
|
config.update({'patch_size': (8,1)}) |
|
|
|
model = transformers.ViTForImageClassification.from_pretrained(model_name, config=config, ignore_mismatched_sizes=True) |
|
model.vit.embeddings.patch_embeddings.projection = torch.nn.Conv2d(256, 768, kernel_size=(8, 1), stride=(8, 1), padding=(0,0), groups=256) |
|
model.classifier=torch.nn.Sequential(torch.nn.Linear(768,1000,bias=True), |
|
torch.nn.Dropout(p=0.1), |
|
torch.nn.Linear(1000,2,bias=True)) |
|
self.ViT = model |
|
|
|
def forward(self,x): |
|
x=self.conv1(x) |
|
x=self.batchnorm1(x) |
|
x=self.ViT.forward(x).logits |
|
|
|
return x |
|
|