fpaissan commited on
Commit
6534ede
1 Parent(s): 7ad8b29

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +4 -4
README.md CHANGED
@@ -50,19 +50,19 @@ Below are listed all the necessary commands.
50
  ### ESC50
51
 
52
  ```bash
53
- python train_clap.py --experiment_name tinyCLAP_$MODEL_NAME --zs_eval True --esc_folder $PATH_TO_ESC
54
  ```
55
 
56
  ### UrbanSound8K
57
 
58
  ```bash
59
- python train_clap.py --experiment_name tinyCLAP_$MODEL_NAME --zs_eval True --us8k_folder $PATH_TO_US8K
60
  ```
61
 
62
  ### TUT17
63
 
64
  ```bash
65
- python train_clap.py --experiment_name tinyCLAP_$MODEL_NAME --zs_eval True --tut17_folder $PATH_TO_TUT17
66
  ```
67
 
68
  ## Pre-trained Models
@@ -74,7 +74,7 @@ _Note_: The checkpoints on HF contain the entire CLAP module (complete of text
74
  To run inference using the pretrained models, please use:
75
 
76
  ```bash
77
- python train_clap.py --pretrained_clap fpaissan/tinyCLAP/$MODEL_NAME --zs_eval True --tut17_folder $PATH_TO_TUT17
78
  ```
79
 
80
  This command will automatically download the checkpoint, if present in the zoo of pretrained models. Make sure to change the dataset configuration file based on the evaluation.
 
50
  ### ESC50
51
 
52
  ```bash
53
+ python train_clap.py hparams/distill_clap.yaml --experiment_name tinyCLAP_$MODEL_NAME --zs_eval True --esc_folder $PATH_TO_ESC
54
  ```
55
 
56
  ### UrbanSound8K
57
 
58
  ```bash
59
+ python train_clap.py hparams/distill_clap.yaml --experiment_name tinyCLAP_$MODEL_NAME --zs_eval True --us8k_folder $PATH_TO_US8K
60
  ```
61
 
62
  ### TUT17
63
 
64
  ```bash
65
+ python train_clap.py hparams/distill_clap.yaml --experiment_name tinyCLAP_$MODEL_NAME --zs_eval True --tut17_folder $PATH_TO_TUT17
66
  ```
67
 
68
  ## Pre-trained Models
 
74
  To run inference using the pretrained models, please use:
75
 
76
  ```bash
77
+ python train_clap.py hparams/distill_clap.yaml --pretrained_clap fpaissan/tinyCLAP/$MODEL_NAME.ckpt --zs_eval True --tut17_folder $PATH_TO_TUT17
78
  ```
79
 
80
  This command will automatically download the checkpoint, if present in the zoo of pretrained models. Make sure to change the dataset configuration file based on the evaluation.