update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- generated_from_trainer
|
4 |
+
metrics:
|
5 |
+
- wer
|
6 |
+
model-index:
|
7 |
+
- name: wav2vec2-base-finetune-vi-v5
|
8 |
+
results: []
|
9 |
+
---
|
10 |
+
|
11 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
12 |
+
should probably proofread and complete it, then remove this comment. -->
|
13 |
+
|
14 |
+
# wav2vec2-base-finetune-vi-v5
|
15 |
+
|
16 |
+
This model is a fine-tuned version of [foxxy-hm/wav2vec2-base-finetune-vi-v5](https://huggingface.co/foxxy-hm/wav2vec2-base-finetune-vi-v5) on the None dataset.
|
17 |
+
It achieves the following results on the evaluation set:
|
18 |
+
- Loss: 0.2484
|
19 |
+
- Wer: 0.1527
|
20 |
+
|
21 |
+
## Model description
|
22 |
+
|
23 |
+
More information needed
|
24 |
+
|
25 |
+
## Intended uses & limitations
|
26 |
+
|
27 |
+
More information needed
|
28 |
+
|
29 |
+
## Training and evaluation data
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Training procedure
|
34 |
+
|
35 |
+
### Training hyperparameters
|
36 |
+
|
37 |
+
The following hyperparameters were used during training:
|
38 |
+
- learning_rate: 0.0001
|
39 |
+
- train_batch_size: 8
|
40 |
+
- eval_batch_size: 8
|
41 |
+
- seed: 42
|
42 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
43 |
+
- lr_scheduler_type: linear
|
44 |
+
- lr_scheduler_warmup_steps: 1000
|
45 |
+
- num_epochs: 4
|
46 |
+
|
47 |
+
### Training results
|
48 |
+
|
49 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
50 |
+
|:-------------:|:-----:|:----:|:---------------:|:------:|
|
51 |
+
| 11.2332 | 0.49 | 500 | 3.4000 | 1.0 |
|
52 |
+
| 1.4014 | 0.99 | 1000 | 0.3058 | 0.1825 |
|
53 |
+
| 0.1614 | 1.48 | 1500 | 0.2742 | 0.1646 |
|
54 |
+
| 0.1269 | 1.98 | 2000 | 0.2791 | 0.1628 |
|
55 |
+
| 0.0991 | 2.47 | 2500 | 0.2642 | 0.1589 |
|
56 |
+
| 0.0913 | 2.96 | 3000 | 0.2483 | 0.1555 |
|
57 |
+
| 0.0833 | 3.46 | 3500 | 0.2528 | 0.1535 |
|
58 |
+
| 0.0787 | 3.95 | 4000 | 0.2484 | 0.1527 |
|
59 |
+
|
60 |
+
|
61 |
+
### Framework versions
|
62 |
+
|
63 |
+
- Transformers 4.30.2
|
64 |
+
- Pytorch 2.0.0
|
65 |
+
- Datasets 2.8.0
|
66 |
+
- Tokenizers 0.13.3
|