format37 commited on
Commit
09029f1
1 Parent(s): 716268f

Upload DQN MountainCar-v0 trained agent

Browse files
.gitattributes CHANGED
@@ -30,3 +30,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
30
  *.zip filter=lfs diff=lfs merge=lfs -text
31
  *.zst filter=lfs diff=lfs merge=lfs -text
32
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
30
  *.zip filter=lfs diff=lfs merge=lfs -text
31
  *.zst filter=lfs diff=lfs merge=lfs -text
32
  *tfevents* filter=lfs diff=lfs merge=lfs -text
33
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
DQN-Mlp.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:43f553557754546a57bd27d8c7bb5542b1e5bad7bcbda692f6ba3e9c3ed1552a
3
+ size 100113
DQN-Mlp/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.5.0
DQN-Mlp/data ADDED
@@ -0,0 +1,115 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmRxbi5wb2xpY2llc5SMCURRTlBvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.dqn.policies",
6
+ "__doc__": "\n Policy class with Q-Value Net and target net for DQN\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function DQNPolicy.__init__ at 0x7f95c2dc3040>",
8
+ "_build": "<function DQNPolicy._build at 0x7f95c2dc30d0>",
9
+ "make_q_net": "<function DQNPolicy.make_q_net at 0x7f95c2dc3160>",
10
+ "forward": "<function DQNPolicy.forward at 0x7f95c2dc31f0>",
11
+ "_predict": "<function DQNPolicy._predict at 0x7f95c2dc3280>",
12
+ "_get_constructor_parameters": "<function DQNPolicy._get_constructor_parameters at 0x7f95c2dc3310>",
13
+ "set_training_mode": "<function DQNPolicy.set_training_mode at 0x7f95c2dc33a0>",
14
+ "__abstractmethods__": "frozenset()",
15
+ "_abc_impl": "<_abc._abc_data object at 0x7f95c2dc1b80>"
16
+ },
17
+ "verbose": 0,
18
+ "policy_kwargs": {},
19
+ "observation_space": {
20
+ ":type:": "<class 'gym.spaces.box.Box'>",
21
+ ":serialized:": "gAWVYwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLAoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAACamZm/KVyPvZRoCksChZSMAUOUdJRSlIwEaGlnaJRoEiiWCAAAAAAAAACamRk/KVyPPZRoCksChZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolgIAAAAAAAAAAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLAoWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYCAAAAAAAAAAEBlGghSwKFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
22
+ "dtype": "float32",
23
+ "_shape": [
24
+ 2
25
+ ],
26
+ "low": "[-1.2 -0.07]",
27
+ "high": "[0.6 0.07]",
28
+ "bounded_below": "[ True True]",
29
+ "bounded_above": "[ True True]",
30
+ "_np_random": null
31
+ },
32
+ "action_space": {
33
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
34
+ ":serialized:": "gAWVLwsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLA4wGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaBOMBXN0YXRllH2UKIwDa2V5lIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolsAJAAAAAAAALyBneVMvIf9UAKsMZkzwGN4IN7BUi+HSiphYizXht3N7oul2rAT/ocNTObXZBsWU8wYfgkuifvVYyXGhM+yDBnRBRS9n1tSV4LlIcHD3IIKjMdXuPJRhzxeS6nULfuJChZTkzX3X489yRSYsNGZqNa2Qv/tUjZpnbqyA+nnM/xGIIOWkp9iQAEDHnL64oQeVON6tH/WhIX4PcEr5/MVTK8bSNd6TNKZE9zHZDkdwW3iaYme1E2ROtR8PQ6xWDt0+pfPEgs4XuF4ADvEwspV6m9UcL5XqT+DAVNPdebtjexMZIb1m+VXyRWBIgEtnJlmiwaE9aCRqbmGpPJNYIiCHvKbThaPX1gTbt7iv9mSkTuczhd6uN4SpiLjIO5Il8GcNOPa68prw7DbTU8d550WtaaiXZKKqfEfFeTXVChNsqr968yZXvpFBRRq/qRyi0rdbGxn8Hb7YYWMt5G7L74dImmCN2zeuaLaJBo9Z3XN2sgtgIi6b0pFVr8R7owdL/HaTyWm6qEAFW24qBAUsAyU21K6VVR/DIdcrpQRPg7YgGneC4PVvPw8zWUas7DZN3+lRflo0eooRBj9PuJoERlp/DfdMi7nm0qM3KFVGoiByMeY3gD/SV32z6dELXBlX9702nj+EHK9x4sHJfmAiT+e2oIjk9UjUv/TEULy9tzCyh03Xkk+HjzhUDhTJflo/mnzrAQAwREhC6rsEEMK1YUPrPOZN9bGD38jep8pnSkCzw+F74InLH5SdkoOJb6a90ZWNW0WvdjUH2jOZRorkZJBaB9hPg9iBLvS3kwgW4Hc0mfe8o2mDm1lqzy411+/84zCrKSf3uPVSFqTOEme5HaHouKZyzVSzKSrpbI6Mfks5JyxMGbMKpcF1TJeHaKlBxAkGBOKd+gpzFTwP0Q1OKGbj6gal0rUWPK8Nfi9//UDiTDA9Nh6bVATLKP9tBv9szz7npaS58Y1oUMmBefC1jmWmPWa8f7wdvWHGeZ9EM479XLwu/8MAUTvjOoOTFzykH1Qar5TOuXgPY7lML00IngPjMDpR8pu0n0s6nHRXSbcr1x7normYQqroO3LUyNVetZnqvWQv2cOylVxFMEFC1Tvj0FNoqiTIubSh3eNhai2U5cA5TI3IqNicb12ztC3qpVHqHZpvIzjliSiEX01XglshqKOZSCB5MjJyyK/pjnTGfEQF758ZTN9qu5IRSzLCitABvtVOi8jUJtbKXNEeACVktDjwr4ehzL7zh04rE/1YPU43GLI8LxT9ZFGzEZP0JrG3BKSVfpO85idFZwH5HENmScUCsAEO9eJUpaRx5ib+TqwifzLypb6Xt3KyuzMfs2R6XTtXid/VrDNIcssk3ktU5EmSOPCeXtHEUlM8AwEGqpWUft5zuIXo+KL6lLF+l7zsC2PQIcAS+xfNUufulQtVoCG8pNoTTdLtUpza9PwqBRLASx34NurIpxxHNL5/ZL4RDp/0AMlcNVChdoBWKilMRrIoFcl+wUolfvFtRospLzr2W7F4KWAzQOTRwn6VwHWuzgRGaBnxuPLUXni1vQE5MK+baEO5nCqmhpBhV34ZNmdFsiFDlgOg6jxSh01DEYRrljsfERDilvrtCrzQo1YmAP0rFAmOZ2tCiu7KkIEji3LtFNi0VbSdKD94eIayyig5jrUckSVzLc+CmCSysDdvMtaGMgLMTIg8+Wr8qcXH2ohAJN+6sJ4+4JD3A8RE7y3SUB/F0sG0+G8DetSzT51w04NZjiPOqpmpxG7QpIgbsMAewK+Y5MxwvY9g7Og5k8qWPRtxVL44W+IVLKH9FGxTmQq24KAhstMYZwFO9yFbz614E+ErQdAEY5HIvwIFKa93OHeo8mOfLuN0rqQQHh1UYrDH9lhT0MqxFcq9btqQLZmK1hJlEXTBvs6zsUHpz39pkfkBAMgXofMyhAxSrQapYsoS/qZhYpYZ9tMxUEEBz062UAYqhob/sUwPGj011/9gm1+g6EOHrDe3G6qweEcV3QxngwVgy/kimIwZ4nTr2U1d/ler+uOtH0haXZOs5TU3CsHZ1Rbz+bsoou10qZOZH7Yq7MaKaUsocaOKij440UMjJ58qQIL+av7Scjyzmj2738cn5VVxD6NBlEWKhHTn44nLpn5+2zt62Ptzjsi+zoNgDD+ogDOmW9x8r+rL5RTedUCS80DwlrJw+4Gb+d1vgpXe3D+/FcMvv/K0Zu+ABPXHpRt9kPjiCr1zXHSZhHjz3e0C/6AAtPBA8WJ9etk4v6qxHm5qSXvxIHXtCk/ZAUnHIsNU6O/MrsI0lJDy0JDTQd9nUcoS7r9idZLkSzsB6Ild0FTvB5FJRGxRZ1ok8gmpy1AmIQBcetcJC1l5Ck3ObR33RJ/CKzCbhvCc9HyupTWoqKsiN9xSdcvhANjRgx9p/eYfV1QeCsMAMRlU+AIVwHWIGyPj4jXnNwbwrKiQzDRQhwHzGfHZKCAcN7EFI/apUCTGXZg8/pZhMpm8XWctf/6l3GGoz88JZQw2HmP0E2Fi9k7qVn61yD86R6YaIGfJruDmjhpBLKazvKyRaFW5ffpeIdtsYNsQqchEWTQMwoiVEs5AvzAaiJX9izllLULq2N0eYFroSPvrUtjmqYkMToBfC/q7+QHV1PlZiFuLQabgwJQGJmqwlD2AnVmamOXLU7AXyWE67ii1uDSjBVBUkqVk83bnSs7ms1Fa0NLRy2T/frXWD756ag1cw3V/3CodotziykBrlUGGdxrwPosmgayhekQEgFTv4ChcmsEK9a9lvTw3Mh9MxvPTp5vrf7J5OXTs/rT5+6NSNuwjOMxcM0rAOiB9F/O0vTGTLW7BuPKiOFN27/TxD58sVCZfaS1okxS1st80IVgH4rKBW66m6pRJxiOAYkX8Z0g6XraPRr0u8LqofvLAP8oqOObUUh3cVXu56ZCum/OrrjJcXg7/e/IkaRCrpLge3HyJeG/r3aY8EOanfqSoNCjulVTGxAATnXXxb/wkJrQLTq2qwxeMG4sBQDUWFm4COzcoE9NrxRpgpDVccT/80OgihKq2skO7bvCiQXSjWsqmUVW23WaJ9TNxnjbKSAtkNJSyFqKM4ZpBRSwTsEJu6Cg8VOkp98QnV9Rl80rB9NYn6VOkTnQvGpjf5urhsTHe945Q/Zi79I/1SUS6eoenq3en6+31Jdcas/vTQNGTepMDsvfttzQ7Q+9SO8X7d+8ggCQRkZgQtnSXfBztHLQizMt7pIPhWEgT8+mKZHUkQ6yIh0h7mt5RCIDj6Cq80PDSNkBsSgm4fzQC9CloknLSOXYiPKY9XULM+5i2ktNGGMMkUQgX55wAlGgJjAJ1NJSJiIeUUpQoSwNoDU5OTkr/////Sv////9LAHSUYk1wAoWUjAFDlHSUUpSMA3Bvc5RNxAF1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu",
35
+ "n": 3,
36
+ "_shape": [],
37
+ "dtype": "int64",
38
+ "_np_random": "RandomState(MT19937)"
39
+ },
40
+ "n_envs": 1,
41
+ "num_timesteps": 5000000,
42
+ "_total_timesteps": 5000000,
43
+ "_num_timesteps_at_start": 0,
44
+ "seed": null,
45
+ "action_noise": null,
46
+ "start_time": 1665594775.502816,
47
+ "learning_rate": 0.001,
48
+ "tensorboard_log": null,
49
+ "lr_schedule": {
50
+ ":type:": "<class 'function'>",
51
+ ":serialized:": "gAWV+wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGUvaG9tZS9hbGV4L2FuYWNvbmRhMy9lbnZzL2RlZXAtcmwtY2xhc3MvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMZS9ob21lL2FsZXgvYW5hY29uZGEzL2VudnMvZGVlcC1ybC1jbGFzcy9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9QYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
52
+ },
53
+ "_last_obs": {
54
+ ":type:": "<class 'numpy.ndarray'>",
55
+ ":serialized:": "gAWVfQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYIAAAAAAAAAPhcBL9mu6o8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwKGlIwBQ5R0lFKULg=="
56
+ },
57
+ "_last_episode_starts": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_original_obs": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVfQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYIAAAAAAAAANOyCb/E2qk8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwKGlIwBQ5R0lFKULg=="
64
+ },
65
+ "_episode_num": 25000,
66
+ "use_sde": false,
67
+ "sde_sample_freq": -1,
68
+ "_current_progress_remaining": 0.0,
69
+ "ep_info_buffer": {
70
+ ":type:": "<class 'collections.deque'>",
71
+ ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwGkAAAAAAACMAWyUS8iMAXSUR0C5S5mH58BudX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5S+DuBtk4dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5TC8RQJokdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5THpJwsGxdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5TMYVEd/8dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5TRV89fTkdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5TV57kXDWdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5Tag8wHqvdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5TfGDg62fdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5TjoMz/IbdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5ToSTUy57dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5Tsm1YyO8dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5TxKxxDLKdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5T1lS0jTsdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5T6a8UVSGdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5T/E7bL2YdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5UDb2xptadX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5UH06tDD1dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5UMOvZAY6dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5URK+evpydX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5UWB6Skj5dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5Uaahg3LndX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5UgUdNnGsdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5UlVAmiQDdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5UqOUQkHEdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5UvO938oAdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5U0C4rjHXdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5U4Kk/KQrdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5U8Z2hZhbdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5VA5E2HcldX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5VFiYCyQgdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5VKXJHRTkdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5VPSbhFVldX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5VUN4mkWRdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5VZJqynk1dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5VdrqD9OzdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5ViGGmDUWdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5VmbpzLfUdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5VrNE5QxfdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5Vv083dbgdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5V1J+YtxudX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5V512FFlTdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5V+vechC/dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5WDmVqveQdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5WH/ugHu7dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5WMh3u/lAdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5WQwwXZXddX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5WU+Il+mWdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5WZRzRx95dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5Wd1q8DjjdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5WieXeFcqdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5WmxyCFsYdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5WrX5FgDzdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5WwI/iYLLdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5W0dNSIgvdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5W409QoCudX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5W9K1TisGdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5XB9fb9IgdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5XG8pXp4bdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5XLnAmAskdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5XQsu8K5TdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5XVMdYGMXdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5XaDho/RmdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5XfHMlkYodX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5Xj5lOGj9dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5XoQhnrY5dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5XskO3DvWdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5Xw0a6z3RdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5X03rY5DJdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5X6LXcxj8dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5X/DMJQchdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5YDgu7HyVdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5YHsB2fTTdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5YMAcDKYBdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5YREQsf7rdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5YVlopQUIdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5YZ7u+h4/dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5YebP+n63dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5Yi+WfK6ndX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5YnnzH0btdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5YsHT7VJ+dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5YwkgKWszdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5Y0wfp2U0dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5Y5SpiqhldX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5Y9dIClrNdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5ZB5tJnQIdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5ZGGOlwcYdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5ZKWiDdxidX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5ZOjBMzuXdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5ZStqcmShdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5ZWu/cnE3dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5Za3sTnJUdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5Zf2HgxagdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5ZksR15jZdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5ZpN9x6v8dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5Zu33+MqCdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5ZzujVQQ+dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5Z4fQv6CUdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5Z9BScbzcdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5aB6Zc9nsdWUu"
72
+ },
73
+ "ep_success_buffer": {
74
+ ":type:": "<class 'collections.deque'>",
75
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
76
+ },
77
+ "_n_updates": 1237500,
78
+ "buffer_size": 50000,
79
+ "batch_size": 32,
80
+ "learning_starts": 50000,
81
+ "tau": 1.0,
82
+ "gamma": 0.99,
83
+ "gradient_steps": 1,
84
+ "optimize_memory_usage": false,
85
+ "replay_buffer_class": {
86
+ ":type:": "<class 'abc.ABCMeta'>",
87
+ ":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
88
+ "__module__": "stable_baselines3.common.buffers",
89
+ "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device:\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
90
+ "__init__": "<function ReplayBuffer.__init__ at 0x7f95c2e193a0>",
91
+ "add": "<function ReplayBuffer.add at 0x7f95c2e19430>",
92
+ "sample": "<function ReplayBuffer.sample at 0x7f95c2e194c0>",
93
+ "_get_samples": "<function ReplayBuffer._get_samples at 0x7f95c2e19550>",
94
+ "__abstractmethods__": "frozenset()",
95
+ "_abc_impl": "<_abc._abc_data object at 0x7f95c2e1a680>"
96
+ },
97
+ "replay_buffer_kwargs": {},
98
+ "train_freq": {
99
+ ":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
100
+ ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLBGgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"
101
+ },
102
+ "actor": null,
103
+ "use_sde_at_warmup": false,
104
+ "exploration_initial_eps": 1.0,
105
+ "exploration_final_eps": 0.1,
106
+ "exploration_fraction": 0.1,
107
+ "target_update_interval": 10000,
108
+ "_n_calls": 5000000,
109
+ "max_grad_norm": 10,
110
+ "exploration_rate": 0.1,
111
+ "exploration_schedule": {
112
+ ":type:": "<class 'function'>",
113
+ ":serialized:": "gAWVnwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwRLE0MsZAF8ABgAiAFrBHIQiABTAIgCZAF8ABgAiACIAhgAFACIARsAFwBTAGQAUwCUTksBhpQpjBJwcm9ncmVzc19yZW1haW5pbmeUhZSMZS9ob21lL2FsZXgvYW5hY29uZGEzL2VudnMvZGVlcC1ybC1jbGFzcy9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLbkMGAAEMAQQClIwDZW5klIwMZW5kX2ZyYWN0aW9ulIwFc3RhcnSUh5QpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxlL2hvbWUvYWxleC9hbmFjb25kYTMvZW52cy9kZWVwLXJsLWNsYXNzL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpRoHilSlGgeKVKUh5R0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCR9lH2UKGgZaA6MDF9fcXVhbG5hbWVfX5SMG2dldF9saW5lYXJfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lChoC4wIYnVpbHRpbnOUjAVmbG9hdJSTlIwGcmV0dXJulGgwdYwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBqMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP7mZmZmZmZqFlFKUaDhHP7mZmZmZmZqFlFKUaDhHP/AAAAAAAACFlFKUh5SMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
114
+ }
115
+ }
DQN-Mlp/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:64f397976b8f71c421113f158160fcc9cd36b07ba030664ed80f8c1cdf77659f
3
+ size 40539
DQN-Mlp/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:15772b5f51a44fc15fdfa6e31282acedc8dbc20258000b8bc9ad11d8a981be6d
3
+ size 41179
DQN-Mlp/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
DQN-Mlp/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.15.0-50-generic-x86_64-with-glibc2.31 #56~20.04.1-Ubuntu SMP Tue Sep 27 15:51:29 UTC 2022
2
+ Python: 3.9.12
3
+ Stable-Baselines3: 1.5.0
4
+ PyTorch: 1.8.1
5
+ GPU Enabled: True
6
+ Numpy: 1.21.5
7
+ Gym: 0.21.0
README.md ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - MountainCar-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: DQN
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: -200.00 +/- 0.00
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: MountainCar-v0
20
+ type: MountainCar-v0
21
+ ---
22
+
23
+ # **DQN** Agent playing **MountainCar-v0**
24
+ This is a trained model of a **DQN** agent playing **MountainCar-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
25
+
26
+ ## Usage (with Stable-baselines3)
27
+ TODO: Add your code
28
+
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmRxbi5wb2xpY2llc5SMCURRTlBvbGljeZSTlC4=", "__module__": "stable_baselines3.dqn.policies", "__doc__": "\n Policy class with Q-Value Net and target net for DQN\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function DQNPolicy.__init__ at 0x7f95c2dc3040>", "_build": "<function DQNPolicy._build at 0x7f95c2dc30d0>", "make_q_net": "<function DQNPolicy.make_q_net at 0x7f95c2dc3160>", "forward": "<function DQNPolicy.forward at 0x7f95c2dc31f0>", "_predict": "<function DQNPolicy._predict at 0x7f95c2dc3280>", "_get_constructor_parameters": "<function DQNPolicy._get_constructor_parameters at 0x7f95c2dc3310>", "set_training_mode": "<function DQNPolicy.set_training_mode at 0x7f95c2dc33a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f95c2dc1b80>"}, "verbose": 0, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVYwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLAoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAACamZm/KVyPvZRoCksChZSMAUOUdJRSlIwEaGlnaJRoEiiWCAAAAAAAAACamRk/KVyPPZRoCksChZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolgIAAAAAAAAAAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLAoWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYCAAAAAAAAAAEBlGghSwKFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [2], "low": "[-1.2 -0.07]", "high": "[0.6 0.07]", "bounded_below": "[ True True]", "bounded_above": "[ True True]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVLwsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLA4wGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaBOMBXN0YXRllH2UKIwDa2V5lIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolsAJAAAAAAAALyBneVMvIf9UAKsMZkzwGN4IN7BUi+HSiphYizXht3N7oul2rAT/ocNTObXZBsWU8wYfgkuifvVYyXGhM+yDBnRBRS9n1tSV4LlIcHD3IIKjMdXuPJRhzxeS6nULfuJChZTkzX3X489yRSYsNGZqNa2Qv/tUjZpnbqyA+nnM/xGIIOWkp9iQAEDHnL64oQeVON6tH/WhIX4PcEr5/MVTK8bSNd6TNKZE9zHZDkdwW3iaYme1E2ROtR8PQ6xWDt0+pfPEgs4XuF4ADvEwspV6m9UcL5XqT+DAVNPdebtjexMZIb1m+VXyRWBIgEtnJlmiwaE9aCRqbmGpPJNYIiCHvKbThaPX1gTbt7iv9mSkTuczhd6uN4SpiLjIO5Il8GcNOPa68prw7DbTU8d550WtaaiXZKKqfEfFeTXVChNsqr968yZXvpFBRRq/qRyi0rdbGxn8Hb7YYWMt5G7L74dImmCN2zeuaLaJBo9Z3XN2sgtgIi6b0pFVr8R7owdL/HaTyWm6qEAFW24qBAUsAyU21K6VVR/DIdcrpQRPg7YgGneC4PVvPw8zWUas7DZN3+lRflo0eooRBj9PuJoERlp/DfdMi7nm0qM3KFVGoiByMeY3gD/SV32z6dELXBlX9702nj+EHK9x4sHJfmAiT+e2oIjk9UjUv/TEULy9tzCyh03Xkk+HjzhUDhTJflo/mnzrAQAwREhC6rsEEMK1YUPrPOZN9bGD38jep8pnSkCzw+F74InLH5SdkoOJb6a90ZWNW0WvdjUH2jOZRorkZJBaB9hPg9iBLvS3kwgW4Hc0mfe8o2mDm1lqzy411+/84zCrKSf3uPVSFqTOEme5HaHouKZyzVSzKSrpbI6Mfks5JyxMGbMKpcF1TJeHaKlBxAkGBOKd+gpzFTwP0Q1OKGbj6gal0rUWPK8Nfi9//UDiTDA9Nh6bVATLKP9tBv9szz7npaS58Y1oUMmBefC1jmWmPWa8f7wdvWHGeZ9EM479XLwu/8MAUTvjOoOTFzykH1Qar5TOuXgPY7lML00IngPjMDpR8pu0n0s6nHRXSbcr1x7normYQqroO3LUyNVetZnqvWQv2cOylVxFMEFC1Tvj0FNoqiTIubSh3eNhai2U5cA5TI3IqNicb12ztC3qpVHqHZpvIzjliSiEX01XglshqKOZSCB5MjJyyK/pjnTGfEQF758ZTN9qu5IRSzLCitABvtVOi8jUJtbKXNEeACVktDjwr4ehzL7zh04rE/1YPU43GLI8LxT9ZFGzEZP0JrG3BKSVfpO85idFZwH5HENmScUCsAEO9eJUpaRx5ib+TqwifzLypb6Xt3KyuzMfs2R6XTtXid/VrDNIcssk3ktU5EmSOPCeXtHEUlM8AwEGqpWUft5zuIXo+KL6lLF+l7zsC2PQIcAS+xfNUufulQtVoCG8pNoTTdLtUpza9PwqBRLASx34NurIpxxHNL5/ZL4RDp/0AMlcNVChdoBWKilMRrIoFcl+wUolfvFtRospLzr2W7F4KWAzQOTRwn6VwHWuzgRGaBnxuPLUXni1vQE5MK+baEO5nCqmhpBhV34ZNmdFsiFDlgOg6jxSh01DEYRrljsfERDilvrtCrzQo1YmAP0rFAmOZ2tCiu7KkIEji3LtFNi0VbSdKD94eIayyig5jrUckSVzLc+CmCSysDdvMtaGMgLMTIg8+Wr8qcXH2ohAJN+6sJ4+4JD3A8RE7y3SUB/F0sG0+G8DetSzT51w04NZjiPOqpmpxG7QpIgbsMAewK+Y5MxwvY9g7Og5k8qWPRtxVL44W+IVLKH9FGxTmQq24KAhstMYZwFO9yFbz614E+ErQdAEY5HIvwIFKa93OHeo8mOfLuN0rqQQHh1UYrDH9lhT0MqxFcq9btqQLZmK1hJlEXTBvs6zsUHpz39pkfkBAMgXofMyhAxSrQapYsoS/qZhYpYZ9tMxUEEBz062UAYqhob/sUwPGj011/9gm1+g6EOHrDe3G6qweEcV3QxngwVgy/kimIwZ4nTr2U1d/ler+uOtH0haXZOs5TU3CsHZ1Rbz+bsoou10qZOZH7Yq7MaKaUsocaOKij440UMjJ58qQIL+av7Scjyzmj2738cn5VVxD6NBlEWKhHTn44nLpn5+2zt62Ptzjsi+zoNgDD+ogDOmW9x8r+rL5RTedUCS80DwlrJw+4Gb+d1vgpXe3D+/FcMvv/K0Zu+ABPXHpRt9kPjiCr1zXHSZhHjz3e0C/6AAtPBA8WJ9etk4v6qxHm5qSXvxIHXtCk/ZAUnHIsNU6O/MrsI0lJDy0JDTQd9nUcoS7r9idZLkSzsB6Ild0FTvB5FJRGxRZ1ok8gmpy1AmIQBcetcJC1l5Ck3ObR33RJ/CKzCbhvCc9HyupTWoqKsiN9xSdcvhANjRgx9p/eYfV1QeCsMAMRlU+AIVwHWIGyPj4jXnNwbwrKiQzDRQhwHzGfHZKCAcN7EFI/apUCTGXZg8/pZhMpm8XWctf/6l3GGoz88JZQw2HmP0E2Fi9k7qVn61yD86R6YaIGfJruDmjhpBLKazvKyRaFW5ffpeIdtsYNsQqchEWTQMwoiVEs5AvzAaiJX9izllLULq2N0eYFroSPvrUtjmqYkMToBfC/q7+QHV1PlZiFuLQabgwJQGJmqwlD2AnVmamOXLU7AXyWE67ii1uDSjBVBUkqVk83bnSs7ms1Fa0NLRy2T/frXWD756ag1cw3V/3CodotziykBrlUGGdxrwPosmgayhekQEgFTv4ChcmsEK9a9lvTw3Mh9MxvPTp5vrf7J5OXTs/rT5+6NSNuwjOMxcM0rAOiB9F/O0vTGTLW7BuPKiOFN27/TxD58sVCZfaS1okxS1st80IVgH4rKBW66m6pRJxiOAYkX8Z0g6XraPRr0u8LqofvLAP8oqOObUUh3cVXu56ZCum/OrrjJcXg7/e/IkaRCrpLge3HyJeG/r3aY8EOanfqSoNCjulVTGxAATnXXxb/wkJrQLTq2qwxeMG4sBQDUWFm4COzcoE9NrxRpgpDVccT/80OgihKq2skO7bvCiQXSjWsqmUVW23WaJ9TNxnjbKSAtkNJSyFqKM4ZpBRSwTsEJu6Cg8VOkp98QnV9Rl80rB9NYn6VOkTnQvGpjf5urhsTHe945Q/Zi79I/1SUS6eoenq3en6+31Jdcas/vTQNGTepMDsvfttzQ7Q+9SO8X7d+8ggCQRkZgQtnSXfBztHLQizMt7pIPhWEgT8+mKZHUkQ6yIh0h7mt5RCIDj6Cq80PDSNkBsSgm4fzQC9CloknLSOXYiPKY9XULM+5i2ktNGGMMkUQgX55wAlGgJjAJ1NJSJiIeUUpQoSwNoDU5OTkr/////Sv////9LAHSUYk1wAoWUjAFDlHSUUpSMA3Bvc5RNxAF1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu", "n": 3, "_shape": [], "dtype": "int64", "_np_random": "RandomState(MT19937)"}, "n_envs": 1, "num_timesteps": 5000000, "_total_timesteps": 5000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1665594775.502816, "learning_rate": 0.001, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV+wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGUvaG9tZS9hbGV4L2FuYWNvbmRhMy9lbnZzL2RlZXAtcmwtY2xhc3MvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMZS9ob21lL2FsZXgvYW5hY29uZGEzL2VudnMvZGVlcC1ybC1jbGFzcy9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9QYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVfQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYIAAAAAAAAAPhcBL9mu6o8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwKGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVfQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYIAAAAAAAAANOyCb/E2qk8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwKGlIwBQ5R0lFKULg=="}, "_episode_num": 25000, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwGkAAAAAAACMAWyUS8iMAXSUR0C5S5mH58BudX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5S+DuBtk4dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5TC8RQJokdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5THpJwsGxdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5TMYVEd/8dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5TRV89fTkdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5TV57kXDWdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5Tag8wHqvdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5TfGDg62fdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5TjoMz/IbdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5ToSTUy57dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5Tsm1YyO8dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5TxKxxDLKdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5T1lS0jTsdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5T6a8UVSGdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5T/E7bL2YdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5UDb2xptadX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5UH06tDD1dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5UMOvZAY6dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5URK+evpydX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5UWB6Skj5dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5Uaahg3LndX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5UgUdNnGsdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5UlVAmiQDdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5UqOUQkHEdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5UvO938oAdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5U0C4rjHXdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5U4Kk/KQrdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5U8Z2hZhbdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5VA5E2HcldX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5VFiYCyQgdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5VKXJHRTkdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5VPSbhFVldX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5VUN4mkWRdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5VZJqynk1dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5VdrqD9OzdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5ViGGmDUWdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5VmbpzLfUdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5VrNE5QxfdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5Vv083dbgdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5V1J+YtxudX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5V512FFlTdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5V+vechC/dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5WDmVqveQdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5WH/ugHu7dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5WMh3u/lAdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5WQwwXZXddX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5WU+Il+mWdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5WZRzRx95dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5Wd1q8DjjdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5WieXeFcqdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5WmxyCFsYdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5WrX5FgDzdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5WwI/iYLLdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5W0dNSIgvdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5W409QoCudX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5W9K1TisGdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5XB9fb9IgdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5XG8pXp4bdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5XLnAmAskdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5XQsu8K5TdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5XVMdYGMXdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5XaDho/RmdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5XfHMlkYodX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5Xj5lOGj9dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5XoQhnrY5dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5XskO3DvWdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5Xw0a6z3RdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5X03rY5DJdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5X6LXcxj8dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5X/DMJQchdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5YDgu7HyVdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5YHsB2fTTdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5YMAcDKYBdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5YREQsf7rdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5YVlopQUIdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5YZ7u+h4/dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5YebP+n63dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5Yi+WfK6ndX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5YnnzH0btdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5YsHT7VJ+dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5YwkgKWszdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5Y0wfp2U0dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5Y5SpiqhldX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5Y9dIClrNdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5ZB5tJnQIdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5ZGGOlwcYdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5ZKWiDdxidX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5ZOjBMzuXdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5ZStqcmShdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5ZWu/cnE3dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5Za3sTnJUdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5Zf2HgxagdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5ZksR15jZdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5ZpN9x6v8dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5Zu33+MqCdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5ZzujVQQ+dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5Z4fQv6CUdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5Z9BScbzcdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0C5aB6Zc9nsdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1237500, "buffer_size": 50000, "batch_size": 32, "learning_starts": 50000, "tau": 1.0, "gamma": 0.99, "gradient_steps": 1, "optimize_memory_usage": false, "replay_buffer_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==", "__module__": "stable_baselines3.common.buffers", "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device:\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ", "__init__": "<function ReplayBuffer.__init__ at 0x7f95c2e193a0>", "add": "<function ReplayBuffer.add at 0x7f95c2e19430>", "sample": "<function ReplayBuffer.sample at 0x7f95c2e194c0>", "_get_samples": "<function ReplayBuffer._get_samples at 0x7f95c2e19550>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f95c2e1a680>"}, "replay_buffer_kwargs": {}, "train_freq": {":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>", ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLBGgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"}, "actor": null, "use_sde_at_warmup": false, "exploration_initial_eps": 1.0, "exploration_final_eps": 0.1, "exploration_fraction": 0.1, "target_update_interval": 10000, "_n_calls": 5000000, "max_grad_norm": 10, "exploration_rate": 0.1, "exploration_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVnwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwRLE0MsZAF8ABgAiAFrBHIQiABTAIgCZAF8ABgAiACIAhgAFACIARsAFwBTAGQAUwCUTksBhpQpjBJwcm9ncmVzc19yZW1haW5pbmeUhZSMZS9ob21lL2FsZXgvYW5hY29uZGEzL2VudnMvZGVlcC1ybC1jbGFzcy9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLbkMGAAEMAQQClIwDZW5klIwMZW5kX2ZyYWN0aW9ulIwFc3RhcnSUh5QpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxlL2hvbWUvYWxleC9hbmFjb25kYTMvZW52cy9kZWVwLXJsLWNsYXNzL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpRoHilSlGgeKVKUh5R0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCR9lH2UKGgZaA6MDF9fcXVhbG5hbWVfX5SMG2dldF9saW5lYXJfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lChoC4wIYnVpbHRpbnOUjAVmbG9hdJSTlIwGcmV0dXJulGgwdYwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBqMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP7mZmZmZmZqFlFKUaDhHP7mZmZmZmZqFlFKUaDhHP/AAAAAAAACFlFKUh5SMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "system_info": {"OS": "Linux-5.15.0-50-generic-x86_64-with-glibc2.31 #56~20.04.1-Ubuntu SMP Tue Sep 27 15:51:29 UTC 2022", "Python": "3.9.12", "Stable-Baselines3": "1.5.0", "PyTorch": "1.8.1", "GPU Enabled": "True", "Numpy": "1.21.5", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1e9972a62a0260e3b473906d81de74aa3695ff3013ff2d66ac09fc131a347cd0
3
+ size 164045
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -200.0, "std_reward": 0.0, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-10-12T23:17:11.530724"}