nehulagrawal commited on
Commit
3432523
1 Parent(s): 40f0122

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +128 -19
README.md CHANGED
@@ -1,4 +1,3 @@
1
-
2
  ---
3
  tags:
4
  - ultralyticsplus
@@ -8,45 +7,93 @@ tags:
8
  - vision
9
  - object-detection
10
  - pytorch
11
-
12
  library_name: ultralytics
13
  library_version: 8.0.43
14
  inference: false
15
-
16
  model-index:
17
  - name: foduucom/stockmarket-pattern-detection-yolov8
18
  results:
19
  - task:
20
  type: object-detection
21
-
22
  metrics:
23
- - type: precision # since mAP@0.5 is not available on hf.co/metrics
24
- value: 0.61355 # min: 0.0 - max: 1.0
25
- name: mAP@0.5(box)
 
 
 
26
  ---
27
 
28
  <div align="center">
29
- <img width="640" alt="foduucom/stockmarket-pattern-detection-yolov8" src="https://huggingface.co/foduucom/stockmarket-pattern-detection-yolov8/resolve/main/thumbnail.jpg">
30
  </div>
31
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32
  ### Supported Labels
33
 
34
  ```
35
  ['Head and shoulders bottom', 'Head and shoulders top', 'M_Head', 'StockLine', 'Triangle', 'W_Bottom']
36
  ```
37
 
38
- ### How to use
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
39
 
40
- - Install [ultralyticsplus](https://github.com/fcakyon/ultralyticsplus):
41
 
 
 
 
42
  ```bash
43
  pip install ultralyticsplus==0.0.28 ultralytics==8.0.43
44
  ```
45
 
46
- - Load model and perform prediction:
47
 
48
  ```python
49
  from ultralyticsplus import YOLO, render_result
 
50
 
51
  # load model
52
  model = YOLO('foduucom/stockmarket-pattern-detection-yolov8')
@@ -57,15 +104,77 @@ model.overrides['iou'] = 0.45 # NMS IoU threshold
57
  model.overrides['agnostic_nms'] = False # NMS class-agnostic
58
  model.overrides['max_det'] = 1000 # maximum number of detections per image
59
 
60
- # set image
61
- image = 'https://github.com/ultralytics/yolov5/raw/master/data/images/zidane.jpg'
 
 
 
 
 
 
 
 
 
 
 
62
 
63
- # perform inference
64
- results = model.predict(image)
65
 
66
- # observe results
67
- print(results[0].boxes)
68
- render = render_result(model=model, image=image, result=results[0])
69
- render.show()
 
 
 
 
 
 
 
 
 
70
  ```
71
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  tags:
3
  - ultralyticsplus
 
7
  - vision
8
  - object-detection
9
  - pytorch
10
+ - fin
11
  library_name: ultralytics
12
  library_version: 8.0.43
13
  inference: false
 
14
  model-index:
15
  - name: foduucom/stockmarket-pattern-detection-yolov8
16
  results:
17
  - task:
18
  type: object-detection
 
19
  metrics:
20
+ - type: precision
21
+ value: 0.61355
22
+ name: mAP@0.5(box)
23
+ language:
24
+ - en
25
+ pipeline_tag: object-detection
26
  ---
27
 
28
  <div align="center">
29
+ <img width="400" alt="foduucom/stockmarket-pattern-detection-yolov8" src="https://huggingface.co/foduucom/stockmarket-pattern-detection-yolov8/resolve/main/thumbnail.jpg">
30
  </div>
31
 
32
+ # Model Card for YOLOv8s Stock Market Pattern Detection on Live Trading Video Data
33
+
34
+ ## Model Summary
35
+
36
+ The YOLOv8s Stock Market Pattern Detection model is an object detection model based on the YOLO (You Only Look Once) framework. It is designed to detect various chart patterns in real-time stock market trading video data. The model aids traders and investors by automating the analysis of chart patterns, providing timely insights for informed decision-making. The model has been fine-tuned on a diverse dataset and achieved high accuracy in detecting and classifying stock market patterns in live trading scenarios.
37
+
38
+ ## Model Details
39
+
40
+ ### Model Description
41
+ The YOLOv8s Stock Market Pattern Detection model offers a transformative solution for traders and investors by enabling real-time detection of crucial chart patterns within live trading video data. As stock markets evolve rapidly, this model's capabilities empower users with timely insights, allowing them to make informed decisions with speed and accuracy.
42
+
43
+ The model seamlessly integrates into live trading systems, providing instant pattern detection and classification. By leveraging advanced bounding box techniques and pattern-specific feature extraction, the model excels in identifying patterns such as 'Head and shoulders bottom,' 'Head and shoulders top,' 'M_Head,' 'StockLine,' 'Triangle,' and 'W_Bottom.' This enables traders to optimize their strategies, automate trading decisions, and respond to market trends in real-time.
44
+
45
+ To facilitate integration into live trading systems or to inquire about customization, please contact us at info@foduu.com. Your collaboration and feedback are instrumental in refining and enhancing the model's performance in dynamic trading environments.
46
+
47
+ - **Developed by:** FODUU AI
48
+ - **Model type:** Object Detection
49
+ - **Task:** Stock Market Pattern Detection on Live Trading Video Data
50
+
51
+ The YOLOv8s Stock Market Pattern Detection model is designed to adapt to the fast-paced nature of live trading environments. Its ability to operate on real-time video data allows traders and investors to harness pattern-based insights without delay.
52
+
53
  ### Supported Labels
54
 
55
  ```
56
  ['Head and shoulders bottom', 'Head and shoulders top', 'M_Head', 'StockLine', 'Triangle', 'W_Bottom']
57
  ```
58
 
59
+ ## Uses
60
+
61
+ ### Direct Use
62
+
63
+ The YOLOv8s Stock Market Pattern Detection model can be directly integrated into live trading systems to provide real-time detection and classification of chart patterns. Traders can utilize the model's insights for timely decision-making.
64
+
65
+ ### Downstream Use
66
+
67
+ The model's real-time capabilities can be leveraged to automate trading strategies, generate alerts for specific patterns, and enhance overall trading performance.
68
+
69
+ ### Out-of-Scope Use
70
+
71
+ The model is not designed for unrelated object detection tasks or scenarios outside the scope of stock market pattern detection in live trading video data.
72
+
73
+ ## Bias, Risks, and Limitations
74
+
75
+ The YOLOv8s Stock Market Pattern Detection model may exhibit some limitations and biases:
76
+
77
+ - Performance may be affected by variations in video quality, lighting conditions, and pattern complexity within live trading data.
78
+ - Rapid market fluctuations and noise in video data may impact the model's accuracy and responsiveness.
79
+ - Market-specific patterns or anomalies not well-represented in the training data may pose challenges for detection.
80
+
81
+ ### Recommendations
82
 
83
+ Users should be aware of the model's limitations and potential biases. Thorough testing and validation within live trading simulations are advised before deploying the model in real trading environments.
84
 
85
+ ## How to Get Started with the Model
86
+
87
+ To begin using the YOLOv8s Stock Market Pattern Detection model on live trading video data, follow these steps:
88
  ```bash
89
  pip install ultralyticsplus==0.0.28 ultralytics==8.0.43
90
  ```
91
 
92
+ - Load model and perform real-time prediction:
93
 
94
  ```python
95
  from ultralyticsplus import YOLO, render_result
96
+ import cv2
97
 
98
  # load model
99
  model = YOLO('foduucom/stockmarket-pattern-detection-yolov8')
 
104
  model.overrides['agnostic_nms'] = False # NMS class-agnostic
105
  model.overrides['max_det'] = 1000 # maximum number of detections per image
106
 
107
+ # initialize video capture
108
+ # Open the video file
109
+ video_path = "path/to/your/video/file.mp4"
110
+ cap = cv2.VideoCapture(video_path)
111
+
112
+ # Loop through the video frames
113
+ while cap.isOpened():
114
+ # Read a frame from the video
115
+ success, frame = cap.read()
116
+
117
+ if success:
118
+ # Run YOLOv8 inference on the frame
119
+ results = model(frame)
120
 
121
+ # Visualize the results on the frame
122
+ annotated_frame = results[0].plot()
123
 
124
+ # Display the annotated frame
125
+ cv2.imshow("YOLOv8 Inference", annotated_frame)
126
+
127
+ # Break the loop if 'q' is pressed
128
+ if cv2.waitKey(1) & 0xFF == ord("q"):
129
+ break
130
+ else:
131
+ # Break the loop if the end of the video is reached
132
+ break
133
+
134
+ # Release the video capture object and close the display window
135
+ cap.release()
136
+ cv2.destroyAllWindows()
137
  ```
138
 
139
+ ## Training Details
140
+
141
+ ### Training Data
142
+
143
+ The model is trained on a diverse dataset containing stock market chart images with various chart patterns, capturing different market conditions and scenarios.
144
+
145
+ ### Training Procedure
146
+
147
+ The training process involves extensive computation and is conducted over multiple epochs. The model's weights are adjusted to minimize detection loss and optimize performance for stock market pattern detection.
148
+
149
+ #### Metrics
150
+
151
+ - mAP@0.5 (box):
152
+ - All patterns: 0.932
153
+ - Individual patterns: Varies based on pattern type
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ The YOLOv8s architecture incorporates modifications tailored to stock market pattern detection. It features a specialized backbone network, self-attention mechanisms, and pattern-specific feature extraction modules.
158
+
159
+ ### Compute Infrastructure
160
+
161
+ #### Hardware
162
+
163
+ NVIDIA GeForce RTX 3080 card
164
+
165
+ #### Software
166
+
167
+ The model was trained and fine-tuned using a Jupyter Notebook environment.
168
+
169
+ ## Model Card Contact
170
+
171
+ For inquiries and contributions, please contact us at info@foduu.com.
172
+
173
+ ```bibtex
174
+ @ModelCard{
175
+ author = {Nehul Agrawal and
176
+ Pranjal Singh Thakur},
177
+ title = {YOLOv8s Stock Market Pattern Detection on Live Trading Video Data},
178
+ year = {2023}
179
+ }
180
+ ```