|
import os |
|
from torchvision import transforms |
|
from transforms import * |
|
from masking_generator import TubeMaskingGenerator, TubeletMaskingGenerator |
|
from kinetics import VideoClsDataset, VideoMAE |
|
from ssv2 import SSVideoClsDataset |
|
import synthetic_tubelets as synthetic_tubelets |
|
import ast |
|
import random |
|
|
|
class DataAugmentationForVideoMAE(object): |
|
def __init__(self, args): |
|
self.input_mean = [0.485, 0.456, 0.406] |
|
self.input_std = [0.229, 0.224, 0.225] |
|
normalize = GroupNormalize(self.input_mean, self.input_std) |
|
self.train_augmentation = GroupMultiScaleCrop(args.input_size, [1, .875, .75, .66]) |
|
self.add_tubelets = args.add_tubelets |
|
self.mask_type = args.mask_type |
|
|
|
|
|
self.transform_original = transforms.Compose([ |
|
self.train_augmentation, |
|
Stack(roll=False), |
|
ToTorchFormatTensor(div=True), |
|
normalize, |
|
]) |
|
|
|
|
|
if args.add_tubelets: |
|
scales = ast.literal_eval(args.scales) |
|
|
|
self.tubelets = synthetic_tubelets.PatchMask( |
|
use_objects=args.use_objects, |
|
objects_path=args.objects_path, |
|
region_sampler=dict( |
|
scales=scales, |
|
ratios=[0.5, 0.67, 0.75, 1.0, 1.33, 1.50, 2.0], |
|
scale_jitter=0.18, |
|
num_rois=2, |
|
), |
|
key_frame_probs=[0.5, 0.3, 0.2], |
|
loc_velocity=12, |
|
rot_velocity=6, |
|
size_velocity=0.025, |
|
label_prob=1.0, |
|
motion_type=args.motion_type, |
|
patch_transformation='rotation',) |
|
|
|
|
|
self.transform1 = transforms.Compose([ |
|
self.train_augmentation, |
|
self.tubelets, |
|
]) |
|
self.transform2 = transforms.Compose([Stack(roll=False), |
|
ToTorchFormatTensor(div=True), |
|
normalize, |
|
]) |
|
else: |
|
self.transform = self.transform_original |
|
|
|
self.original_masked_position_generator = TubeMaskingGenerator( |
|
args.window_size, args.mask_ratio |
|
) |
|
|
|
if args.mask_type == 'tube': |
|
self.masked_position_generator = self.original_masked_position_generator |
|
elif args.mask_type == 'tubelet': |
|
self.masked_position_generator = TubeletMaskingGenerator( |
|
args.window_size, args.mask_ratio, args.visible_frames, args.sub_mask_type |
|
) |
|
else: |
|
raise NotImplemented |
|
|
|
|
|
def __call__(self, images): |
|
process_data, _, traj_rois = self.ComposedTransform(images) |
|
|
|
if self.mask_type == 'tubelet' and traj_rois is not None: |
|
return process_data, self.masked_position_generator(traj_rois) |
|
else: |
|
return process_data, self.masked_position_generator() |
|
|
|
def ComposedTransform(self, images): |
|
traj_rois = None |
|
|
|
if self.add_tubelets: |
|
data = self.transform1(images) |
|
process_data, traj_rois = data[:-1], data[-1] |
|
process_data, _ = self.transform2(process_data) |
|
else: |
|
process_data, _ = self.transform(images) |
|
|
|
return process_data, _, traj_rois |
|
|
|
def __repr__(self): |
|
repr = "(DataAugmentationForVideoMAE,\n" |
|
try: |
|
self.transform |
|
except: |
|
repr += " transform = %s,\n" % (str(self.transform1) + str(self.transform2)) |
|
else: |
|
repr += " transform = %s,\n" % str(self.transform) |
|
|
|
repr += " Masked position generator = %s,\n" % str(self.masked_position_generator) |
|
repr += ")" |
|
return repr |
|
|
|
|
|
def build_pretraining_dataset(args): |
|
transform = DataAugmentationForVideoMAE(args) |
|
dataset = VideoMAE( |
|
root=None, |
|
setting=args.data_path, |
|
video_ext='mp4', |
|
is_color=True, |
|
modality='rgb', |
|
new_length=args.num_frames, |
|
new_step=args.sampling_rate, |
|
transform=transform, |
|
temporal_jitter=False, |
|
video_loader=True, |
|
use_decord=True, |
|
lazy_init=False) |
|
print("Data Aug = %s" % str(transform)) |
|
return dataset |
|
|
|
|
|
def build_dataset(is_train, test_mode, args): |
|
if args.data_set == 'Kinetics-400' or args.data_set == "Mini-Kinetics": |
|
mode = None |
|
anno_path = None |
|
if is_train is True: |
|
mode = 'train' |
|
if 'Mini' in args.data_set: |
|
anno_path = os.path.join(args.data_path, 'train_mini_kinetics.csv') |
|
else: |
|
anno_path = os.path.join(args.data_path, 'train.csv') |
|
elif test_mode is True: |
|
mode = 'test' |
|
if 'Mini' in args.data_set: |
|
anno_path = os.path.join(args.data_path, 'test_mini_kinetics.csv') |
|
else: |
|
anno_path = os.path.join(args.data_path, 'test.csv') |
|
else: |
|
mode = 'validation' |
|
if 'Mini' in args.data_set: |
|
anno_path = os.path.join(args.data_path, 'val_mini_kinetics.csv') |
|
else: |
|
anno_path = os.path.join(args.data_path, 'val.csv') |
|
|
|
dataset = VideoClsDataset( |
|
anno_path=anno_path, |
|
data_path='/', |
|
mode=mode, |
|
clip_len=args.num_frames, |
|
frame_sample_rate=args.sampling_rate, |
|
num_segment=1, |
|
test_num_segment=args.test_num_segment, |
|
test_num_crop=args.test_num_crop, |
|
num_crop=1 if not test_mode else 3, |
|
keep_aspect_ratio=True, |
|
crop_size=args.input_size, |
|
short_side_size=args.short_side_size, |
|
new_height=256, |
|
new_width=320, |
|
args=args) |
|
if 'Mini' in args.data_set: |
|
nb_classes = 200 |
|
else: |
|
nb_classes = 400 |
|
|
|
elif args.data_set == 'SSV2' or args.data_set == 'SSV2-Mini': |
|
mode = None |
|
anno_path = None |
|
if is_train is True: |
|
mode = 'train' |
|
if 'Mini' in args.data_set: |
|
anno_path = os.path.join(args.data_path, 'train_mini.csv') |
|
else: |
|
anno_path = os.path.join(args.data_path, 'train.csv') |
|
elif test_mode is True: |
|
mode = 'test' |
|
anno_path = os.path.join(args.data_path, 'test.csv') |
|
else: |
|
mode = 'validation' |
|
anno_path = os.path.join(args.data_path, 'val.csv') |
|
|
|
dataset = SSVideoClsDataset( |
|
anno_path=anno_path, |
|
data_path='/', |
|
mode=mode, |
|
clip_len=1, |
|
num_segment=args.num_frames, |
|
test_num_segment=args.test_num_segment, |
|
test_num_crop=args.test_num_crop, |
|
num_crop=1 if not test_mode else 3, |
|
keep_aspect_ratio=True, |
|
crop_size=args.input_size, |
|
short_side_size=args.short_side_size, |
|
new_height=256, |
|
new_width=320, |
|
args=args) |
|
nb_classes = 174 |
|
|
|
elif args.data_set == 'UCF101': |
|
mode = None |
|
anno_path = None |
|
if is_train is True: |
|
mode = 'train' |
|
anno_path = os.path.join(args.data_path, 'train.csv') |
|
elif test_mode is True: |
|
mode = 'test' |
|
anno_path = os.path.join(args.data_path, 'test.csv') |
|
else: |
|
mode = 'validation' |
|
anno_path = os.path.join(args.data_path, 'val.csv') |
|
|
|
dataset = VideoClsDataset( |
|
anno_path=anno_path, |
|
data_path='/', |
|
mode=mode, |
|
clip_len=args.num_frames, |
|
frame_sample_rate=args.sampling_rate, |
|
num_segment=1, |
|
test_num_segment=args.test_num_segment, |
|
test_num_crop=args.test_num_crop, |
|
num_crop=1 if not test_mode else 3, |
|
keep_aspect_ratio=True, |
|
crop_size=args.input_size, |
|
short_side_size=args.short_side_size, |
|
new_height=256, |
|
new_width=320, |
|
args=args) |
|
nb_classes = 101 |
|
|
|
elif args.data_set == 'HMDB51': |
|
mode = None |
|
anno_path = None |
|
if is_train is True: |
|
mode = 'train' |
|
anno_path = os.path.join(args.data_path, 'train.csv') |
|
elif test_mode is True: |
|
mode = 'test' |
|
anno_path = os.path.join(args.data_path, 'test.csv') |
|
else: |
|
mode = 'validation' |
|
anno_path = os.path.join(args.data_path, 'val.csv') |
|
|
|
dataset = VideoClsDataset( |
|
anno_path=anno_path, |
|
data_path='/', |
|
mode=mode, |
|
clip_len=args.num_frames, |
|
frame_sample_rate=args.sampling_rate, |
|
num_segment=1, |
|
test_num_segment=args.test_num_segment, |
|
test_num_crop=args.test_num_crop, |
|
num_crop=1 if not test_mode else 3, |
|
keep_aspect_ratio=True, |
|
crop_size=args.input_size, |
|
short_side_size=args.short_side_size, |
|
new_height=256, |
|
new_width=320, |
|
args=args) |
|
nb_classes = 51 |
|
else: |
|
raise NotImplementedError() |
|
assert nb_classes == args.nb_classes |
|
print("Number of the class = %d" % args.nb_classes) |
|
|
|
return dataset, nb_classes |
|
|