Increasing training steps, playing with hyperparameters
Browse files- README.md +1 -1
- a2c-LunarLander-v2.zip +2 -2
- a2c-LunarLander-v2/data +10 -10
- a2c-LunarLander-v2/policy.optimizer.pth +1 -1
- a2c-LunarLander-v2/policy.pth +1 -1
- config.json +1 -1
- replay.mp4 +2 -2
- results.json +1 -1
README.md
CHANGED
@@ -10,7 +10,7 @@ model-index:
|
|
10 |
results:
|
11 |
- metrics:
|
12 |
- type: mean_reward
|
13 |
-
value:
|
14 |
name: mean_reward
|
15 |
task:
|
16 |
type: reinforcement-learning
|
|
|
10 |
results:
|
11 |
- metrics:
|
12 |
- type: mean_reward
|
13 |
+
value: 17.50 +/- 120.65
|
14 |
name: mean_reward
|
15 |
task:
|
16 |
type: reinforcement-learning
|
a2c-LunarLander-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:aa3d6b94fc4d06ff151848959502a623a13b1b8f20f142b1d238ae16e24e0c2c
|
3 |
+
size 101048
|
a2c-LunarLander-v2/data
CHANGED
@@ -51,12 +51,12 @@
|
|
51 |
"_np_random": null
|
52 |
},
|
53 |
"n_envs": 16,
|
54 |
-
"num_timesteps":
|
55 |
-
"_total_timesteps":
|
56 |
"_num_timesteps_at_start": 0,
|
57 |
"seed": null,
|
58 |
"action_noise": null,
|
59 |
-
"start_time":
|
60 |
"learning_rate": 0.0007,
|
61 |
"tensorboard_log": null,
|
62 |
"lr_schedule": {
|
@@ -65,7 +65,7 @@
|
|
65 |
},
|
66 |
"_last_obs": {
|
67 |
":type:": "<class 'numpy.ndarray'>",
|
68 |
-
":serialized:": "
|
69 |
},
|
70 |
"_last_episode_starts": {
|
71 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -75,20 +75,20 @@
|
|
75 |
"_episode_num": 0,
|
76 |
"use_sde": false,
|
77 |
"sde_sample_freq": -1,
|
78 |
-
"_current_progress_remaining":
|
79 |
"ep_info_buffer": {
|
80 |
":type:": "<class 'collections.deque'>",
|
81 |
-
":serialized:": "
|
82 |
},
|
83 |
"ep_success_buffer": {
|
84 |
":type:": "<class 'collections.deque'>",
|
85 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
86 |
},
|
87 |
-
"_n_updates":
|
88 |
-
"n_steps":
|
89 |
"gamma": 0.99,
|
90 |
-
"gae_lambda": 0
|
91 |
-
"ent_coef": 0.
|
92 |
"vf_coef": 0.5,
|
93 |
"max_grad_norm": 0.5,
|
94 |
"normalize_advantage": false
|
|
|
51 |
"_np_random": null
|
52 |
},
|
53 |
"n_envs": 16,
|
54 |
+
"num_timesteps": 1250000,
|
55 |
+
"_total_timesteps": 1250000,
|
56 |
"_num_timesteps_at_start": 0,
|
57 |
"seed": null,
|
58 |
"action_noise": null,
|
59 |
+
"start_time": 1651770662.5923681,
|
60 |
"learning_rate": 0.0007,
|
61 |
"tensorboard_log": null,
|
62 |
"lr_schedule": {
|
|
|
65 |
},
|
66 |
"_last_obs": {
|
67 |
":type:": "<class 'numpy.ndarray'>",
|
68 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAHPnJb4D1Yg/kinAOZA4wrwXIFe8OmBovQAAAAAAAAAA09tPPs14jT8r3fg9SVOtvgE6Mz+SNtM+AAAAAAAAAABzRDi+xQRvP6+5L70dkiy9Nb1MvQk+ir0AAAAAAAAAALPfW71aUYs/nsVhPKCwmb1YtZM9qceVPQAAAAAAAAAA9kNYvspaKD/1IbS9MnUcvdPOxr0nPB+9AAAAAAAAAABtHxC+u3VbP8wShb2LWfi8UkRsvfZeVT0AAAAAAAAAAG2PF74ODt4+3lDtvLFrML1bNXq9y2nfPQAAAAAAAAAAJiE7vgf45D56os27G7ypvCc5uDzGLwA+AAAAAAAAAADgHUS+2AzXPhwRjzxrK6e8nGINPSh2v70AAAAAAAAAAEbA2L4sh4y9SOmMvdm0UrxKQpI+ea6ZPAAAgD8AAIA/wBSmvTOHZD/bFn68/1ZLvRhan7zeCWK9AAAAAAAAAABNaXC9kVt5P/oAQr31apE7Kl2VvFlOujwAAAAAAAAAAJovvr3DY7Q+444vOwSARL1Y9Ik8cjrwuwAAAAAAAAAAwHr2vYZDFj+QQzu9bxQ2vUWtJbxwmsu9AAAAAAAAAADz+rC9b4soP3JvibwKQUK9bcMoPYRzMT0AAAAAAAAAAKYg9L0xOis/DslOvSf6M71dwlI9Oi3tvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
69 |
},
|
70 |
"_last_episode_starts": {
|
71 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
75 |
"_episode_num": 0,
|
76 |
"use_sde": false,
|
77 |
"sde_sample_freq": -1,
|
78 |
+
"_current_progress_remaining": 0.0,
|
79 |
"ep_info_buffer": {
|
80 |
":type:": "<class 'collections.deque'>",
|
81 |
+
":serialized:": "gAWVbxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIzm3CvTIEUMCUhpRSlIwBbJRN6AOMAXSUR0Cz7U9BKL88dX2UKGgGaAloD0MImzdOCvPfYUCUhpRSlGgVTY8CaBZHQLPuJ8x9G7V1fZQoaAZoCWgPQwglzLT9KzNIQJSGlFKUaBVLpmgWR0Cz7kfNmlImdX2UKGgGaAloD0MIgUI9fQQJU8CUhpRSlGgVTegDaBZHQLPuXsXizcB1fZQoaAZoCWgPQwjTEiujEVBkQJSGlFKUaBVNpANoFkdAs+8GPGQ0XXV9lChoBmgJaA9DCLZpbK8F0FPAlIaUUpRoFU3oA2gWR0Cz7z4U8FINdX2UKGgGaAloD0MIJy7HKxBfcUCUhpRSlGgVTREBaBZHQLPwNgBcRlJ1fZQoaAZoCWgPQwg6PITx0yg2wJSGlFKUaBVLrmgWR0Cz8QOr6tT2dX2UKGgGaAloD0MI+RG/Yg1FV8CUhpRSlGgVTegDaBZHQLPynhsImgJ1fZQoaAZoCWgPQwh56pEGdxNxQJSGlFKUaBVNMwFoFkdAs/Rz5ylvZXV9lChoBmgJaA9DCJnU0AYgE3BAlIaUUpRoFU1qAWgWR0Cz9MKUiY9gdX2UKGgGaAloD0MIC0J5H0eIYsCUhpRSlGgVS41oFkdAs/VvRnezlnV9lChoBmgJaA9DCF2MgXUcwzVAlIaUUpRoFU3oA2gWR0Cz9e/mcOLBdX2UKGgGaAloD0MIhh+cTx0FWcCUhpRSlGgVTegDaBZHQLP3O6Ae7tl1fZQoaAZoCWgPQwhKYkm5+6pBwJSGlFKUaBVLcmgWR0Cz+G7Lt/nXdX2UKGgGaAloD0MIIm3jT1QDYUCUhpRSlGgVTUkDaBZHQLP7hcophF51fZQoaAZoCWgPQwgWwmosYf06wJSGlFKUaBVN6ANoFkdAs/x7JMg2ZXV9lChoBmgJaA9DCOv822W/5i1AlIaUUpRoFU1QAWgWR0Cz/LMlw97odX2UKGgGaAloD0MIZqNzforRVcCUhpRSlGgVTegDaBZHQLP9lcwg1WN1fZQoaAZoCWgPQwj8GkmCcEFDwJSGlFKUaBVLeGgWR0Cz/qXqNZNgdX2UKGgGaAloD0MIZqTeUzlmUMCUhpRSlGgVTegDaBZHQLQAsi0v4/N1fZQoaAZoCWgPQwguy9dl+M5SwJSGlFKUaBVN6ANoFkdAtALOO3lS0nV9lChoBmgJaA9DCOWXwRiRNFzAlIaUUpRoFU3ZA2gWR0C0Atr7GecydX2UKGgGaAloD0MInwJgPIPsQMCUhpRSlGgVS2NoFkdAtANA5YHPeHV9lChoBmgJaA9DCFVP5h995zvAlIaUUpRoFU3oA2gWR0C0A3MdPtUodX2UKGgGaAloD0MIqRPQRNg4W8CUhpRSlGgVTegDaBZHQLQEcuEVWS51fZQoaAZoCWgPQwhffxKfO31TwJSGlFKUaBVN6ANoFkdAtAVp2Rq46XV9lChoBmgJaA9DCJpBfGDHfwVAlIaUUpRoFU1HAWgWR0C0BkGIGhVVdX2UKGgGaAloD0MIgEdUqG4qSsCUhpRSlGgVTegDaBZHQLQGlQNCqp91fZQoaAZoCWgPQwi6pGq7CRtsQJSGlFKUaBVNjQJoFkdAtAa8AIY3vXV9lChoBmgJaA9DCCEE5EuoiFbAlIaUUpRoFU3oA2gWR0C0B20CeVcEdX2UKGgGaAloD0MImS7E6g/6YMCUhpRSlGgVS6JoFkdAtAql3B55aHV9lChoBmgJaA9DCBb59UNs6EHAlIaUUpRoFU3oA2gWR0C0CxH8CPp7dX2UKGgGaAloD0MIHD9UGjGAY0CUhpRSlGgVTbQBaBZHQLQLcK0lZ5l1fZQoaAZoCWgPQwhe9BWkGbdfQJSGlFKUaBVN6ANoFkdAtAwh4jbBXXV9lChoBmgJaA9DCJRsdTlloXFAlIaUUpRoFU1zAWgWR0C0DmZCKJl8dX2UKGgGaAloD0MIELOXbSfOa0CUhpRSlGgVTcgBaBZHQLQO3s2vStx1fZQoaAZoCWgPQwiEDOTZ5VlTQJSGlFKUaBVLqWgWR0C0DxLr9l3AdX2UKGgGaAloD0MIEsKjjSO1VcCUhpRSlGgVTegDaBZHQLQPbbvw3Hd1fZQoaAZoCWgPQwgxBtZx/OhmQJSGlFKUaBVNUQJoFkdAtA+fEXLvC3V9lChoBmgJaA9DCNU+HY8ZKFFAlIaUUpRoFUvAaBZHQLQP+SUC7sh1fZQoaAZoCWgPQwjRlJ1+0LJzQJSGlFKUaBVLyGgWR0C0EMWAf+0gdX2UKGgGaAloD0MILZRMTu2pUsCUhpRSlGgVTegDaBZHQLQS/yrxRVJ1fZQoaAZoCWgPQwjXvoBeuD86wJSGlFKUaBVN6ANoFkdAtBMsuFpPAXV9lChoBmgJaA9DCPWAeciULlnAlIaUUpRoFU3oA2gWR0C0E+HhS9/SdX2UKGgGaAloD0MIn3djQWGwHsCUhpRSlGgVS91oFkdAtBSpePaL43V9lChoBmgJaA9DCESi0LLu9UPAlIaUUpRoFU3oA2gWR0C0F+GpQ1rJdX2UKGgGaAloD0MIfUCgM2nCUsCUhpRSlGgVTegDaBZHQLQYeBT4tYl1fZQoaAZoCWgPQwipFhHF5ItOwJSGlFKUaBVN6ANoFkdAtBmUb6xgRnV9lChoBmgJaA9DCJeQD3o2OW1AlIaUUpRoFU0CAmgWR0C0GZsDr7fpdX2UKGgGaAloD0MI4rGfxVLES8CUhpRSlGgVTegDaBZHQLQbsaCL/CJ1fZQoaAZoCWgPQwjIluXrMtpQwJSGlFKUaBVN6ANoFkdAtBxLitJWenV9lChoBmgJaA9DCG75SEp6Zm5AlIaUUpRoFU2BAWgWR0C0HQP3JxNqdX2UKGgGaAloD0MINlZinlXFckCUhpRSlGgVTSgBaBZHQLQgbdoFmnR1fZQoaAZoCWgPQwgOEqJ8QR5YQJSGlFKUaBVLsmgWR0C0IJMfRu0kdX2UKGgGaAloD0MIFOl+TkE2OsCUhpRSlGgVTegDaBZHQLQhMU/wAlx1fZQoaAZoCWgPQwhBECBDx21pQJSGlFKUaBVNrwFoFkdAtCKqrQw9JXV9lChoBmgJaA9DCL4tWKqLJ2xAlIaUUpRoFU2TAWgWR0C0Jf1WGRFJdX2UKGgGaAloD0MIqdkDrcCgPMCUhpRSlGgVTegDaBZHQLQmKeTV2A51fZQoaAZoCWgPQwhTJF8JpEhCwJSGlFKUaBVN6ANoFkdAtCZbI91U2nV9lChoBmgJaA9DCELuIkxRu1LAlIaUUpRoFU3oA2gWR0C0Jq62OQyRdX2UKGgGaAloD0MIh1EQPL5JQsCUhpRSlGgVTegDaBZHQLQm3wl0HQh1fZQoaAZoCWgPQwiDwwsiUmBWwJSGlFKUaBVN6ANoFkdAtCf1rwe/6HV9lChoBmgJaA9DCLX8wFUeVm5AlIaUUpRoFU2/AWgWR0C0KD3dj5KwdX2UKGgGaAloD0MI6Ba6EoHGOsCUhpRSlGgVTUABaBZHQLQpBo5xR2t1fZQoaAZoCWgPQwiX5IBdTQpvQJSGlFKUaBVNcwFoFkdAtCmOaoddV3V9lChoBmgJaA9DCDuKc9TRGF9AlIaUUpRoFU23A2gWR0C0KatxEORUdX2UKGgGaAloD0MIROBIoMEiPsCUhpRSlGgVTegDaBZHQLQpxtNBWxR1fZQoaAZoCWgPQwgTDVLwFHIEQJSGlFKUaBVLv2gWR0C0KdhTjvNNdX2UKGgGaAloD0MIliL5SiCNRsCUhpRSlGgVTegDaBZHQLQp4wJgLJF1fZQoaAZoCWgPQwhAijpzD0kBQJSGlFKUaBVL2GgWR0C0KoF7IDHPdX2UKGgGaAloD0MIRtPZyWAta0CUhpRSlGgVTewBaBZHQLQrIy4FzMl1fZQoaAZoCWgPQwgcz2dAvYU6QJSGlFKUaBVL0GgWR0C0K0MGxD9gdX2UKGgGaAloD0MIdF34wflSYUCUhpRSlGgVTUgDaBZHQLQr2cEeQuF1fZQoaAZoCWgPQwjkEdxI2cduQJSGlFKUaBVNgwFoFkdAtCyyL1mJ33V9lChoBmgJaA9DCN7KEp1lt1TAlIaUUpRoFU3oA2gWR0C0LRVIiC8OdX2UKGgGaAloD0MIlPqytFPCXsCUhpRSlGgVS8JoFkdAtC09OsT37HV9lChoBmgJaA9DCE2espouLHBAlIaUUpRoFU1bAWgWR0C0LqFlCkXUdX2UKGgGaAloD0MIOQt72uHocECUhpRSlGgVTXoBaBZHQLQvEwOOKfp1fZQoaAZoCWgPQwgyWdx/ZPI6QJSGlFKUaBVNDQFoFkdAtDJS/SH/LnV9lChoBmgJaA9DCAjJAiZwKzrAlIaUUpRoFU3oA2gWR0C0N13xe9i+dX2UKGgGaAloD0MIj46rkV3eakCUhpRSlGgVTWACaBZHQLQ4Dz06HTJ1fZQoaAZoCWgPQwgqApzexQlaQJSGlFKUaBVNqQNoFkdAtDoSnNxEOXV9lChoBmgJaA9DCHqlLEMcGlXAlIaUUpRoFU3oA2gWR0C0OxLRfF72dX2UKGgGaAloD0MIy7+WV66WVUCUhpRSlGgVS65oFkdAtDyWnuRcNnV9lChoBmgJaA9DCBqiCn+G/UHAlIaUUpRoFU3oA2gWR0C0Ph0zsQd0dX2UKGgGaAloD0MIxK9Yw0WSS8CUhpRSlGgVTegDaBZHQLQ/UNorWiF1fZQoaAZoCWgPQwjnU8cqpeVVwJSGlFKUaBVN6ANoFkdAtEBhNL127nV9lChoBmgJaA9DCK/RcqCHQErAlIaUUpRoFU3oA2gWR0C0QH/U4JeFdX2UKGgGaAloD0MICw3Espk7MMCUhpRSlGgVTegDaBZHQLRAkSgGr0d1fZQoaAZoCWgPQwi5N79hoqtkQJSGlFKUaBVNIwNoFkdAtEC/EOy3TnV9lChoBmgJaA9DCHtLOV/sZ1JAlIaUUpRoFUvkaBZHQLRBTrTpgTh1fZQoaAZoCWgPQwhpVyHlJyURwJSGlFKUaBVN6ANoFkdAtEJkWpIcznV9lChoBmgJaA9DCGE2AYblTz3AlIaUUpRoFU3oA2gWR0C0Q16RU3n7dX2UKGgGaAloD0MICHO7l/sgTsCUhpRSlGgVTegDaBZHQLRFEICU5dZ1fZQoaAZoCWgPQwjv/+OECdRkwJSGlFKUaBVNGAFoFkdAtEUR1klNUXV9lChoBmgJaA9DCGtiga9oGWBAlIaUUpRoFU2SA2gWR0C0RVhU3n6mdX2UKGgGaAloD0MIfGEyVTDqC0CUhpRSlGgVTV4BaBZHQLRFkrqdH2B1fZQoaAZoCWgPQwgQIEPHDsBNwJSGlFKUaBVN6ANoFkdAtEdFn5BToHV9lChoBmgJaA9DCC/7dac7KULAlIaUUpRoFU3oA2gWR0C0SqQ0XP7fdWUu"
|
82 |
},
|
83 |
"ep_success_buffer": {
|
84 |
":type:": "<class 'collections.deque'>",
|
85 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
86 |
},
|
87 |
+
"_n_updates": 15625,
|
88 |
+
"n_steps": 5,
|
89 |
"gamma": 0.99,
|
90 |
+
"gae_lambda": 1.0,
|
91 |
+
"ent_coef": 0.0,
|
92 |
"vf_coef": 0.5,
|
93 |
"max_grad_norm": 0.5,
|
94 |
"normalize_advantage": false
|
a2c-LunarLander-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 42561
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2033ab4ed454cf6bb72b3c7224694e5267e5a77b4771e6a632535c099f969ba0
|
3 |
size 42561
|
a2c-LunarLander-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 43201
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:34fb44e9626f16e3984224fb7dce1d5be451db1f150c98a2029c0f81912e1075
|
3 |
size 43201
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f709f166f80>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f709f16f050>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f709f16f0e0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f709f16f170>", "_build": "<function ActorCriticPolicy._build at 0x7f709f16f200>", "forward": "<function ActorCriticPolicy.forward at 0x7f709f16f290>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f709f16f320>", "_predict": "<function ActorCriticPolicy._predict at 0x7f709f16f3b0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f709f16f440>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f709f16f4d0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f709f16f560>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f709f13e390>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651770197.7187119, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAK2OlD7+rrc/LvRGPz5aHL4ovF6+GGwxPAAAAAAAAAAAw53UvrLeZD8Odia/BRZAvyjECr4Gvma+AAAAAAAAAACmATy+ejhAP8U4970wC92+YiN7OkZVOb0AAAAAAAAAAFBDvD7065892v1tvzSTWr/WDQ0/eL1ZvgAAAAAAAAAAQp+nvr7XoT/47fq+NyeLvvdSD75sHSG+AAAAAAAAAAB6UKa+YwJ0P733375y8h2/VZnYvV3kU74AAAAAAAAAAM3Qxzw3Uwi9RgaDvtaswb6F0PA82CSzvwAAgD8AAIA/Jm/GvcUgvj9UFxC/QCknPi8tiT0S26o8AAAAAAAAAAAmKhK+DTibP081mL7sJ+K9Qgszvo5xlr4AAAAAAAAAAICykj2QtcQ/GswpPmJfpDxjSz8+S4J3PgAAAAAAAAAAuvB4vkbEYz/98k2/bOALvy6k2z4gxDe+AAAAAAAAAADoZgk/9+zGPm3DWD6B/WS/wNwvP7BpKz4AAAAAAAAAAKoHgD4D5wY/nuGfPoVqVL9T9vU9JYhlPgAAAAAAAAAABsAIvhSLbT86Wpy79I3svtIrSr5XAKE9AAAAAAAAAABa0ow+B4x5PkVb5TwhFTW/2pTAva4/yr0AAAAAAAAAAAahPb66BZc/oiUsvxDuzr7gOUk9nmYSvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIdv9YiA7oXcCUhpRSlIwBbJRLvowBdJRHQK14rPrOZ9d1fZQoaAZoCWgPQwinCHB6l0FrwJSGlFKUaBVLj2gWR0CteLiudPLxdX2UKGgGaAloD0MIcOmY84xYX8CUhpRSlGgVS4RoFkdArXi+clPac3V9lChoBmgJaA9DCJOmQdG8g2XAlIaUUpRoFUuVaBZHQK145+MIeHV1fZQoaAZoCWgPQwhYrOEi9/JGwJSGlFKUaBVLc2gWR0CteSSfUWl/dX2UKGgGaAloD0MIaVTgZBtgN8CUhpRSlGgVS2doFkdArXlKy+pOvnV9lChoBmgJaA9DCM4AF2TLck/AlIaUUpRoFUt3aBZHQK15W2MsH0N1fZQoaAZoCWgPQwhFvHX+7WpIwJSGlFKUaBVLd2gWR0CteWVLSNOudX2UKGgGaAloD0MIPiZSms1DOMCUhpRSlGgVS7hoFkdArXmq5Zr57HV9lChoBmgJaA9DCCYd5WA2+nHAlIaUUpRoFUvbaBZHQK15qyprDZV1fZQoaAZoCWgPQwhwB+qUR6BfwJSGlFKUaBVLUWgWR0CtebHAymALdX2UKGgGaAloD0MIlE25wru8O8CUhpRSlGgVS3doFkdArXnNCgK4QXV9lChoBmgJaA9DCHuGcMyyW2vAlIaUUpRoFUt0aBZHQK1522G7Bft1fZQoaAZoCWgPQwj2RUJbznVQwJSGlFKUaBVLfmgWR0Cteeu8K5TZdX2UKGgGaAloD0MIOEiI8gVZSMCUhpRSlGgVS4NoFkdArXoQEbHZK3V9lChoBmgJaA9DCIfcDDdgu2DAlIaUUpRoFUu5aBZHQK16HrOZ9eB1fZQoaAZoCWgPQwikF7X7VTxxwJSGlFKUaBVLwmgWR0Cteh/gzguRdX2UKGgGaAloD0MILGfvjLZHUsCUhpRSlGgVS8ZoFkdArXpb+ee4C3V9lChoBmgJaA9DCI3ttaD3HkbAlIaUUpRoFUvJaBZHQK16WVoHs1N1fZQoaAZoCWgPQwjHm/wW3dtxwJSGlFKUaBVLcmgWR0CteoItthuwdX2UKGgGaAloD0MI6BVPPdIwE0CUhpRSlGgVS1JoFkdArXqAfU4JeHV9lChoBmgJaA9DCPxyZrtCVVDAlIaUUpRoFUtoaBZHQK16urz5GjN1fZQoaAZoCWgPQwji5H6HIiNnwJSGlFKUaBVL32gWR0Cter4/Vy3kdX2UKGgGaAloD0MINLvurUiMQsCUhpRSlGgVS6toFkdArXrUUGmk33V9lChoBmgJaA9DCC/5n/zdPzvAlIaUUpRoFUufaBZHQK169XgccVB1fZQoaAZoCWgPQwiJmX0eowwUwJSGlFKUaBVLdWgWR0Ctevx1X/5tdX2UKGgGaAloD0MIz7wcdt/hWcCUhpRSlGgVS7VoFkdArXsO2b5M13V9lChoBmgJaA9DCPRqgNJQUmPAlIaUUpRoFUtcaBZHQK17LJpWV/t1fZQoaAZoCWgPQwgz4gLQKDhSwJSGlFKUaBVLmmgWR0Cte0MwL3K0dX2UKGgGaAloD0MIVaUtrvH1ZsCUhpRSlGgVS4doFkdArXtWff4yoHV9lChoBmgJaA9DCFG7XwX4UE3AlIaUUpRoFUuTaBZHQK17cSkj5bh1fZQoaAZoCWgPQwiwyRr1EBhTwJSGlFKUaBVLnmgWR0Cte34m9g4PdX2UKGgGaAloD0MIXalnQShRWsCUhpRSlGgVS3NoFkdArXuKa5PM0XV9lChoBmgJaA9DCPXzpiKVqmXAlIaUUpRoFUtraBZHQK17s6kqMFV1fZQoaAZoCWgPQwg4aoXpe9xYwJSGlFKUaBVL2WgWR0Cte7nYpUgkdX2UKGgGaAloD0MInGotzELPVcCUhpRSlGgVS4doFkdArXu59gF5fXV9lChoBmgJaA9DCNfDl4miyWDAlIaUUpRoFUtoaBZHQK17xEYwZfl1fZQoaAZoCWgPQwhBSuzaXkBqwJSGlFKUaBVL1mgWR0Cte+iCJ40NdX2UKGgGaAloD0MIDVGFP0PbYcCUhpRSlGgVS4poFkdArXv3ZGrjpHV9lChoBmgJaA9DCLcIjPUNRFnAlIaUUpRoFUu+aBZHQK18EZpi7TV1fZQoaAZoCWgPQwhmhSLdz4FOwJSGlFKUaBVLiWgWR0CtfDVNYbKidX2UKGgGaAloD0MIgH106spPQsCUhpRSlGgVS5doFkdArXxNzltCRnV9lChoBmgJaA9DCBcrajCNSmnAlIaUUpRoFUtyaBZHQK18dlS0jTt1fZQoaAZoCWgPQwgNpfYi2thCwJSGlFKUaBVLjmgWR0CtfIeCCjDbdX2UKGgGaAloD0MIbTgsDfyXUsCUhpRSlGgVS55oFkdArXyVY8uBc3V9lChoBmgJaA9DCAh0Jm2qQEvAlIaUUpRoFUuyaBZHQK18o5lvqC91fZQoaAZoCWgPQwiFevoIfKFuwJSGlFKUaBVLmmgWR0CtfLgp8WsSdX2UKGgGaAloD0MISUc5mE2HV8CUhpRSlGgVS3RoFkdArXzA6U7jk3V9lChoBmgJaA9DCNyg9ls7FV7AlIaUUpRoFUuLaBZHQK18yQtBfKJ1fZQoaAZoCWgPQwjNzqJ3KhVawJSGlFKUaBVLfWgWR0CtfM78m8dxdX2UKGgGaAloD0MIyFwZVBu+TcCUhpRSlGgVS21oFkdArXzdxdY4hnV9lChoBmgJaA9DCDLjbaXX+mHAlIaUUpRoFUt0aBZHQK19FWHUMG51fZQoaAZoCWgPQwjuW60Tl7xTwJSGlFKUaBVLlmgWR0CtfRSfL9uQdX2UKGgGaAloD0MICHQmbaraWcCUhpRSlGgVS61oFkdArX0+n4wh4nV9lChoBmgJaA9DCLe28LxUVVPAlIaUUpRoFUt/aBZHQK19U0FbFCN1fZQoaAZoCWgPQwgQWg9fJn1jwJSGlFKUaBVL02gWR0CtfV4gieNDdX2UKGgGaAloD0MIi/1l9+R5J8CUhpRSlGgVS2hoFkdArX1xzYEns3V9lChoBmgJaA9DCOIEptO6eUrAlIaUUpRoFUt3aBZHQK19gona37V1fZQoaAZoCWgPQwg9nMB0WidLwJSGlFKUaBVLXGgWR0CtfZZFgDzRdX2UKGgGaAloD0MIWAOUhhoUUsCUhpRSlGgVS7toFkdArX2cSZjQRnV9lChoBmgJaA9DCA1uawtPL2DAlIaUUpRoFUt3aBZHQK19sdKdxyZ1fZQoaAZoCWgPQwhJopdRLGZRwJSGlFKUaBVLd2gWR0CtfczY287IdX2UKGgGaAloD0MITOMXXkl2U8CUhpRSlGgVS4BoFkdArX3Ym5UcXHV9lChoBmgJaA9DCOCGGK95SULAlIaUUpRoFUtgaBZHQK197wNLDht1fZQoaAZoCWgPQwjiH7b06LJswJSGlFKUaBVLgWgWR0CtffH0se4kdX2UKGgGaAloD0MIv9GOG35DPsCUhpRSlGgVS6NoFkdArX4LMHKOk3V9lChoBmgJaA9DCIZxN4jWiizAlIaUUpRoFUtkaBZHQK1+KQUYbbV1fZQoaAZoCWgPQwh0tKolHYlKwJSGlFKUaBVL3WgWR0CtfkvZh8YydX2UKGgGaAloD0MIzAcEOpOaXsCUhpRSlGgVS3toFkdArX50RUWEb3V9lChoBmgJaA9DCBZO0vyx823AlIaUUpRoFUu5aBZHQK1+jKSPluF1fZQoaAZoCWgPQwhhiQeUDXlywJSGlFKUaBVLfmgWR0Ctfp3Vsk6cdX2UKGgGaAloD0MIatlaXySxXsCUhpRSlGgVS1VoFkdArX6nEKmbb3V9lChoBmgJaA9DCARz9Pi9PVfAlIaUUpRoFUt1aBZHQK1+tnp0OmR1fZQoaAZoCWgPQwhzZrtCn4tkwJSGlFKUaBVLs2gWR0Ctfr2+PBBSdX2UKGgGaAloD0MIGJmAX6MzacCUhpRSlGgVS5doFkdArX7F9F4LTnV9lChoBmgJaA9DCA69xcN7wFPAlIaUUpRoFUuUaBZHQK1+5B0IToN1fZQoaAZoCWgPQwiLbOf7qck+wJSGlFKUaBVLa2gWR0CtfvXMY/FBdX2UKGgGaAloD0MIChNGs7J5TcCUhpRSlGgVS4poFkdArX76+JxecHV9lChoBmgJaA9DCIzbaABvETfAlIaUUpRoFUuFaBZHQK1/CuUUwi91fZQoaAZoCWgPQwhNvtnmxmg/wJSGlFKUaBVLhWgWR0Ctfy1k1/DtdX2UKGgGaAloD0MIhzO/mgPMLsCUhpRSlGgVS7poFkdArX9Ohdt2tHV9lChoBmgJaA9DCMe7I2O1ZFPAlIaUUpRoFUt9aBZHQK1/Txc3VCp1fZQoaAZoCWgPQwg0SMFTyElJwJSGlFKUaBVLV2gWR0Ctf1fFaSs9dX2UKGgGaAloD0MIvmiPF9I+UcCUhpRSlGgVS3NoFkdArX9Y5Lh73XV9lChoBmgJaA9DCHCzeLEwI1TAlIaUUpRoFUtkaBZHQK1/Xo3aSLZ1fZQoaAZoCWgPQwivQspPqmVSwJSGlFKUaBVLbmgWR0Ctf5xLTQVsdX2UKGgGaAloD0MIoG6gwDuwV8CUhpRSlGgVS2RoFkdArX+hk/bCanV9lChoBmgJaA9DCJPkub4PYW7AlIaUUpRoFUu0aBZHQK1/qHHFPzp1fZQoaAZoCWgPQwhWZHRAEu4kwJSGlFKUaBVLcmgWR0Ctf/VNQCSzdX2UKGgGaAloD0MIYOXQIttuV8CUhpRSlGgVS21oFkdArX/600FbFHV9lChoBmgJaA9DCJzbhHtlSV3AlIaUUpRoFUtnaBZHQK2ANVNHpbF1fZQoaAZoCWgPQwjOpiOAG7plwJSGlFKUaBVLkmgWR0CtgD/zreImdX2UKGgGaAloD0MIPzvgumJHU8CUhpRSlGgVS7BoFkdArYBG4XoC+3V9lChoBmgJaA9DCDi9i/fjW1PAlIaUUpRoFUu7aBZHQK2AZyEL6UJ1fZQoaAZoCWgPQwicU8kAUJdawJSGlFKUaBVLjmgWR0CtgHJRoAXEdX2UKGgGaAloD0MIzEHQ0aqASMCUhpRSlGgVS71oFkdArYCV8/lhgHV9lChoBmgJaA9DCNv9KsD3oWjAlIaUUpRoFUuMaBZHQK2Am2+fywx1fZQoaAZoCWgPQwjZz2IpEplgwJSGlFKUaBVL5mgWR0CtgLJdrwfAdX2UKGgGaAloD0MIcLA3MSSdUcCUhpRSlGgVS5xoFkdArYC4vcrRSnV9lChoBmgJaA9DCPEsQUZAAVDAlIaUUpRoFUtXaBZHQK2AzlJ6IFh1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 31, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f709f166f80>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f709f16f050>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f709f16f0e0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f709f16f170>", "_build": "<function ActorCriticPolicy._build at 0x7f709f16f200>", "forward": "<function ActorCriticPolicy.forward at 0x7f709f16f290>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f709f16f320>", "_predict": "<function ActorCriticPolicy._predict at 0x7f709f16f3b0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f709f16f440>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f709f16f4d0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f709f16f560>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f709f13e390>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1250000, "_total_timesteps": 1250000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651770662.5923681, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAHPnJb4D1Yg/kinAOZA4wrwXIFe8OmBovQAAAAAAAAAA09tPPs14jT8r3fg9SVOtvgE6Mz+SNtM+AAAAAAAAAABzRDi+xQRvP6+5L70dkiy9Nb1MvQk+ir0AAAAAAAAAALPfW71aUYs/nsVhPKCwmb1YtZM9qceVPQAAAAAAAAAA9kNYvspaKD/1IbS9MnUcvdPOxr0nPB+9AAAAAAAAAABtHxC+u3VbP8wShb2LWfi8UkRsvfZeVT0AAAAAAAAAAG2PF74ODt4+3lDtvLFrML1bNXq9y2nfPQAAAAAAAAAAJiE7vgf45D56os27G7ypvCc5uDzGLwA+AAAAAAAAAADgHUS+2AzXPhwRjzxrK6e8nGINPSh2v70AAAAAAAAAAEbA2L4sh4y9SOmMvdm0UrxKQpI+ea6ZPAAAgD8AAIA/wBSmvTOHZD/bFn68/1ZLvRhan7zeCWK9AAAAAAAAAABNaXC9kVt5P/oAQr31apE7Kl2VvFlOujwAAAAAAAAAAJovvr3DY7Q+444vOwSARL1Y9Ik8cjrwuwAAAAAAAAAAwHr2vYZDFj+QQzu9bxQ2vUWtJbxwmsu9AAAAAAAAAADz+rC9b4soP3JvibwKQUK9bcMoPYRzMT0AAAAAAAAAAKYg9L0xOis/DslOvSf6M71dwlI9Oi3tvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVbxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIzm3CvTIEUMCUhpRSlIwBbJRN6AOMAXSUR0Cz7U9BKL88dX2UKGgGaAloD0MImzdOCvPfYUCUhpRSlGgVTY8CaBZHQLPuJ8x9G7V1fZQoaAZoCWgPQwglzLT9KzNIQJSGlFKUaBVLpmgWR0Cz7kfNmlImdX2UKGgGaAloD0MIgUI9fQQJU8CUhpRSlGgVTegDaBZHQLPuXsXizcB1fZQoaAZoCWgPQwjTEiujEVBkQJSGlFKUaBVNpANoFkdAs+8GPGQ0XXV9lChoBmgJaA9DCLZpbK8F0FPAlIaUUpRoFU3oA2gWR0Cz7z4U8FINdX2UKGgGaAloD0MIJy7HKxBfcUCUhpRSlGgVTREBaBZHQLPwNgBcRlJ1fZQoaAZoCWgPQwg6PITx0yg2wJSGlFKUaBVLrmgWR0Cz8QOr6tT2dX2UKGgGaAloD0MI+RG/Yg1FV8CUhpRSlGgVTegDaBZHQLPynhsImgJ1fZQoaAZoCWgPQwh56pEGdxNxQJSGlFKUaBVNMwFoFkdAs/Rz5ylvZXV9lChoBmgJaA9DCJnU0AYgE3BAlIaUUpRoFU1qAWgWR0Cz9MKUiY9gdX2UKGgGaAloD0MIC0J5H0eIYsCUhpRSlGgVS41oFkdAs/VvRnezlnV9lChoBmgJaA9DCF2MgXUcwzVAlIaUUpRoFU3oA2gWR0Cz9e/mcOLBdX2UKGgGaAloD0MIhh+cTx0FWcCUhpRSlGgVTegDaBZHQLP3O6Ae7tl1fZQoaAZoCWgPQwhKYkm5+6pBwJSGlFKUaBVLcmgWR0Cz+G7Lt/nXdX2UKGgGaAloD0MIIm3jT1QDYUCUhpRSlGgVTUkDaBZHQLP7hcophF51fZQoaAZoCWgPQwgWwmosYf06wJSGlFKUaBVN6ANoFkdAs/x7JMg2ZXV9lChoBmgJaA9DCOv822W/5i1AlIaUUpRoFU1QAWgWR0Cz/LMlw97odX2UKGgGaAloD0MIZqNzforRVcCUhpRSlGgVTegDaBZHQLP9lcwg1WN1fZQoaAZoCWgPQwj8GkmCcEFDwJSGlFKUaBVLeGgWR0Cz/qXqNZNgdX2UKGgGaAloD0MIZqTeUzlmUMCUhpRSlGgVTegDaBZHQLQAsi0v4/N1fZQoaAZoCWgPQwguy9dl+M5SwJSGlFKUaBVN6ANoFkdAtALOO3lS0nV9lChoBmgJaA9DCOWXwRiRNFzAlIaUUpRoFU3ZA2gWR0C0Atr7GecydX2UKGgGaAloD0MInwJgPIPsQMCUhpRSlGgVS2NoFkdAtANA5YHPeHV9lChoBmgJaA9DCFVP5h995zvAlIaUUpRoFU3oA2gWR0C0A3MdPtUodX2UKGgGaAloD0MIqRPQRNg4W8CUhpRSlGgVTegDaBZHQLQEcuEVWS51fZQoaAZoCWgPQwhffxKfO31TwJSGlFKUaBVN6ANoFkdAtAVp2Rq46XV9lChoBmgJaA9DCJpBfGDHfwVAlIaUUpRoFU1HAWgWR0C0BkGIGhVVdX2UKGgGaAloD0MIgEdUqG4qSsCUhpRSlGgVTegDaBZHQLQGlQNCqp91fZQoaAZoCWgPQwi6pGq7CRtsQJSGlFKUaBVNjQJoFkdAtAa8AIY3vXV9lChoBmgJaA9DCCEE5EuoiFbAlIaUUpRoFU3oA2gWR0C0B20CeVcEdX2UKGgGaAloD0MImS7E6g/6YMCUhpRSlGgVS6JoFkdAtAql3B55aHV9lChoBmgJaA9DCBb59UNs6EHAlIaUUpRoFU3oA2gWR0C0CxH8CPp7dX2UKGgGaAloD0MIHD9UGjGAY0CUhpRSlGgVTbQBaBZHQLQLcK0lZ5l1fZQoaAZoCWgPQwhe9BWkGbdfQJSGlFKUaBVN6ANoFkdAtAwh4jbBXXV9lChoBmgJaA9DCJRsdTlloXFAlIaUUpRoFU1zAWgWR0C0DmZCKJl8dX2UKGgGaAloD0MIELOXbSfOa0CUhpRSlGgVTcgBaBZHQLQO3s2vStx1fZQoaAZoCWgPQwiEDOTZ5VlTQJSGlFKUaBVLqWgWR0C0DxLr9l3AdX2UKGgGaAloD0MIEsKjjSO1VcCUhpRSlGgVTegDaBZHQLQPbbvw3Hd1fZQoaAZoCWgPQwgxBtZx/OhmQJSGlFKUaBVNUQJoFkdAtA+fEXLvC3V9lChoBmgJaA9DCNU+HY8ZKFFAlIaUUpRoFUvAaBZHQLQP+SUC7sh1fZQoaAZoCWgPQwjRlJ1+0LJzQJSGlFKUaBVLyGgWR0C0EMWAf+0gdX2UKGgGaAloD0MILZRMTu2pUsCUhpRSlGgVTegDaBZHQLQS/yrxRVJ1fZQoaAZoCWgPQwjXvoBeuD86wJSGlFKUaBVN6ANoFkdAtBMsuFpPAXV9lChoBmgJaA9DCPWAeciULlnAlIaUUpRoFU3oA2gWR0C0E+HhS9/SdX2UKGgGaAloD0MIn3djQWGwHsCUhpRSlGgVS91oFkdAtBSpePaL43V9lChoBmgJaA9DCESi0LLu9UPAlIaUUpRoFU3oA2gWR0C0F+GpQ1rJdX2UKGgGaAloD0MIfUCgM2nCUsCUhpRSlGgVTegDaBZHQLQYeBT4tYl1fZQoaAZoCWgPQwipFhHF5ItOwJSGlFKUaBVN6ANoFkdAtBmUb6xgRnV9lChoBmgJaA9DCJeQD3o2OW1AlIaUUpRoFU0CAmgWR0C0GZsDr7fpdX2UKGgGaAloD0MI4rGfxVLES8CUhpRSlGgVTegDaBZHQLQbsaCL/CJ1fZQoaAZoCWgPQwjIluXrMtpQwJSGlFKUaBVN6ANoFkdAtBxLitJWenV9lChoBmgJaA9DCG75SEp6Zm5AlIaUUpRoFU2BAWgWR0C0HQP3JxNqdX2UKGgGaAloD0MINlZinlXFckCUhpRSlGgVTSgBaBZHQLQgbdoFmnR1fZQoaAZoCWgPQwgOEqJ8QR5YQJSGlFKUaBVLsmgWR0C0IJMfRu0kdX2UKGgGaAloD0MIFOl+TkE2OsCUhpRSlGgVTegDaBZHQLQhMU/wAlx1fZQoaAZoCWgPQwhBECBDx21pQJSGlFKUaBVNrwFoFkdAtCKqrQw9JXV9lChoBmgJaA9DCL4tWKqLJ2xAlIaUUpRoFU2TAWgWR0C0Jf1WGRFJdX2UKGgGaAloD0MIqdkDrcCgPMCUhpRSlGgVTegDaBZHQLQmKeTV2A51fZQoaAZoCWgPQwhTJF8JpEhCwJSGlFKUaBVN6ANoFkdAtCZbI91U2nV9lChoBmgJaA9DCELuIkxRu1LAlIaUUpRoFU3oA2gWR0C0Jq62OQyRdX2UKGgGaAloD0MIh1EQPL5JQsCUhpRSlGgVTegDaBZHQLQm3wl0HQh1fZQoaAZoCWgPQwiDwwsiUmBWwJSGlFKUaBVN6ANoFkdAtCf1rwe/6HV9lChoBmgJaA9DCLX8wFUeVm5AlIaUUpRoFU2/AWgWR0C0KD3dj5KwdX2UKGgGaAloD0MI6Ba6EoHGOsCUhpRSlGgVTUABaBZHQLQpBo5xR2t1fZQoaAZoCWgPQwiX5IBdTQpvQJSGlFKUaBVNcwFoFkdAtCmOaoddV3V9lChoBmgJaA9DCDuKc9TRGF9AlIaUUpRoFU23A2gWR0C0KatxEORUdX2UKGgGaAloD0MIROBIoMEiPsCUhpRSlGgVTegDaBZHQLQpxtNBWxR1fZQoaAZoCWgPQwgTDVLwFHIEQJSGlFKUaBVLv2gWR0C0KdhTjvNNdX2UKGgGaAloD0MIliL5SiCNRsCUhpRSlGgVTegDaBZHQLQp4wJgLJF1fZQoaAZoCWgPQwhAijpzD0kBQJSGlFKUaBVL2GgWR0C0KoF7IDHPdX2UKGgGaAloD0MIRtPZyWAta0CUhpRSlGgVTewBaBZHQLQrIy4FzMl1fZQoaAZoCWgPQwgcz2dAvYU6QJSGlFKUaBVL0GgWR0C0K0MGxD9gdX2UKGgGaAloD0MIdF34wflSYUCUhpRSlGgVTUgDaBZHQLQr2cEeQuF1fZQoaAZoCWgPQwjkEdxI2cduQJSGlFKUaBVNgwFoFkdAtCyyL1mJ33V9lChoBmgJaA9DCN7KEp1lt1TAlIaUUpRoFU3oA2gWR0C0LRVIiC8OdX2UKGgGaAloD0MIlPqytFPCXsCUhpRSlGgVS8JoFkdAtC09OsT37HV9lChoBmgJaA9DCE2espouLHBAlIaUUpRoFU1bAWgWR0C0LqFlCkXUdX2UKGgGaAloD0MIOQt72uHocECUhpRSlGgVTXoBaBZHQLQvEwOOKfp1fZQoaAZoCWgPQwgyWdx/ZPI6QJSGlFKUaBVNDQFoFkdAtDJS/SH/LnV9lChoBmgJaA9DCAjJAiZwKzrAlIaUUpRoFU3oA2gWR0C0N13xe9i+dX2UKGgGaAloD0MIj46rkV3eakCUhpRSlGgVTWACaBZHQLQ4Dz06HTJ1fZQoaAZoCWgPQwgqApzexQlaQJSGlFKUaBVNqQNoFkdAtDoSnNxEOXV9lChoBmgJaA9DCHqlLEMcGlXAlIaUUpRoFU3oA2gWR0C0OxLRfF72dX2UKGgGaAloD0MIy7+WV66WVUCUhpRSlGgVS65oFkdAtDyWnuRcNnV9lChoBmgJaA9DCBqiCn+G/UHAlIaUUpRoFU3oA2gWR0C0Ph0zsQd0dX2UKGgGaAloD0MIxK9Yw0WSS8CUhpRSlGgVTegDaBZHQLQ/UNorWiF1fZQoaAZoCWgPQwjnU8cqpeVVwJSGlFKUaBVN6ANoFkdAtEBhNL127nV9lChoBmgJaA9DCK/RcqCHQErAlIaUUpRoFU3oA2gWR0C0QH/U4JeFdX2UKGgGaAloD0MICw3Espk7MMCUhpRSlGgVTegDaBZHQLRAkSgGr0d1fZQoaAZoCWgPQwi5N79hoqtkQJSGlFKUaBVNIwNoFkdAtEC/EOy3TnV9lChoBmgJaA9DCHtLOV/sZ1JAlIaUUpRoFUvkaBZHQLRBTrTpgTh1fZQoaAZoCWgPQwhpVyHlJyURwJSGlFKUaBVN6ANoFkdAtEJkWpIcznV9lChoBmgJaA9DCGE2AYblTz3AlIaUUpRoFU3oA2gWR0C0Q16RU3n7dX2UKGgGaAloD0MICHO7l/sgTsCUhpRSlGgVTegDaBZHQLRFEICU5dZ1fZQoaAZoCWgPQwjv/+OECdRkwJSGlFKUaBVNGAFoFkdAtEUR1klNUXV9lChoBmgJaA9DCGtiga9oGWBAlIaUUpRoFU2SA2gWR0C0RVhU3n6mdX2UKGgGaAloD0MIfGEyVTDqC0CUhpRSlGgVTV4BaBZHQLRFkrqdH2B1fZQoaAZoCWgPQwgQIEPHDsBNwJSGlFKUaBVN6ANoFkdAtEdFn5BToHV9lChoBmgJaA9DCC/7dac7KULAlIaUUpRoFU3oA2gWR0C0SqQ0XP7fdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 15625, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:64e185b8a052bcfb3dd8bb80ae091d23114fe5e7b2257bda34abe705b6672964
|
3 |
+
size 261335
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 17.49577525674165, "std_reward": 120.64611866920436, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-05T17:34:22.745945"}
|