florentgbelidji HF staff commited on
Commit
cb05228
1 Parent(s): ecd409c

Decoding image in input

Browse files
Files changed (1) hide show
  1. pipeline.py +5 -1
pipeline.py CHANGED
@@ -2,6 +2,8 @@ from typing import Dict, List, Any
2
  from PIL import Image
3
  import requests
4
  import torch
 
 
5
  from blip import blip_decoder
6
  from torchvision import transforms
7
  from torchvision.transforms.functional import InterpolationMode
@@ -36,9 +38,11 @@ class PreTrainedPipeline():
36
  - "label": A string representing what the label/class is. There can be multiple labels.
37
  - "score": A score between 0 and 1 describing how confident the model is for this label/class.
38
  """
39
- image = data.pop("inputs", data)
40
  parameters = data.pop("parameters", None)
41
 
 
 
42
  image = transform(image).unsqueeze(0).to(device)
43
  with torch.no_grad():
44
  caption = self.model.generate(image, sample=True, top_p=0.9, max_length=20, min_length=5)
 
2
  from PIL import Image
3
  import requests
4
  import torch
5
+ import base64
6
+ from io import BytesIO
7
  from blip import blip_decoder
8
  from torchvision import transforms
9
  from torchvision.transforms.functional import InterpolationMode
 
38
  - "label": A string representing what the label/class is. There can be multiple labels.
39
  - "score": A score between 0 and 1 describing how confident the model is for this label/class.
40
  """
41
+ inputs = data.pop("inputs", data)
42
  parameters = data.pop("parameters", None)
43
 
44
+ # decode base64 image to PIL
45
+ image = Image.open(BytesIO(base64.b64decode(inputs['image'])))
46
  image = transform(image).unsqueeze(0).to(device)
47
  with torch.no_grad():
48
  caption = self.model.generate(image, sample=True, top_p=0.9, max_length=20, min_length=5)