Commit
•
9d9b5e2
1
Parent(s):
e53bc58
Updated requirements.txt and transformed pipeline to handler
Browse files- README.md +10 -2
- pipeline.py → handler.py +4 -4
- requirements.txt +4 -3
README.md
CHANGED
@@ -36,8 +36,16 @@ HF_TOKEN = ""
|
|
36 |
|
37 |
def predict(path_to_image: str = None):
|
38 |
with open(path_to_image, "rb") as i:
|
39 |
-
|
40 |
-
payload = {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
response = r.post(
|
42 |
ENDPOINT_URL, headers={"Authorization": f"Bearer {HF_TOKEN}"}, json=payload
|
43 |
)
|
|
|
36 |
|
37 |
def predict(path_to_image: str = None):
|
38 |
with open(path_to_image, "rb") as i:
|
39 |
+
image = i.read()
|
40 |
+
payload = {
|
41 |
+
"inputs": {"image": image},
|
42 |
+
"parameters": {
|
43 |
+
"sample": True,
|
44 |
+
"top_p":0.9,
|
45 |
+
"min_length":5,
|
46 |
+
"max_length":20
|
47 |
+
}
|
48 |
+
}
|
49 |
response = r.post(
|
50 |
ENDPOINT_URL, headers={"Authorization": f"Bearer {HF_TOKEN}"}, json=payload
|
51 |
)
|
pipeline.py → handler.py
RENAMED
@@ -11,7 +11,7 @@ from torchvision.transforms.functional import InterpolationMode
|
|
11 |
|
12 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
13 |
|
14 |
-
class
|
15 |
def __init__(self, path=""):
|
16 |
# load the optimized model
|
17 |
self.model_path = os.path.join(path,'model_large_caption.pth')
|
@@ -39,14 +39,14 @@ class PreTrainedPipeline():
|
|
39 |
data (:obj:):
|
40 |
includes the input data and the parameters for the inference.
|
41 |
Return:
|
42 |
-
A :obj:`dict`:. The object returned should be a dict of one list like
|
43 |
- "caption": A string corresponding to the generated caption.
|
44 |
"""
|
45 |
inputs = data.pop("inputs", data)
|
46 |
parameters = data.pop("parameters", {})
|
47 |
|
48 |
-
|
49 |
-
image = Image.open(BytesIO(
|
50 |
image = self.transform(image).unsqueeze(0).to(device)
|
51 |
with torch.no_grad():
|
52 |
caption = self.model.generate(
|
|
|
11 |
|
12 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
13 |
|
14 |
+
class EndpointHandler():
|
15 |
def __init__(self, path=""):
|
16 |
# load the optimized model
|
17 |
self.model_path = os.path.join(path,'model_large_caption.pth')
|
|
|
39 |
data (:obj:):
|
40 |
includes the input data and the parameters for the inference.
|
41 |
Return:
|
42 |
+
A :obj:`dict`:. The object returned should be a dict of one list like {"caption": ["A hugging face at the office"]} containing :
|
43 |
- "caption": A string corresponding to the generated caption.
|
44 |
"""
|
45 |
inputs = data.pop("inputs", data)
|
46 |
parameters = data.pop("parameters", {})
|
47 |
|
48 |
+
|
49 |
+
image = Image.open(BytesIO(inputs['image']))
|
50 |
image = self.transform(image).unsqueeze(0).to(device)
|
51 |
with torch.no_grad():
|
52 |
caption = self.model.generate(
|
requirements.txt
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
-
timm
|
2 |
-
|
|
|
3 |
requests
|
4 |
-
Pillow
|
|
|
1 |
+
timm==0.4.12
|
2 |
+
transformers==4.15.0
|
3 |
+
fairscale==0.4.4
|
4 |
requests
|
5 |
+
Pillow
|