|
''' |
|
* Copyright (c) 2022, salesforce.com, inc. |
|
* All rights reserved. |
|
* SPDX-License-Identifier: BSD-3-Clause |
|
* For full license text, see LICENSE.txt file in the repo root or https://opensource.org/licenses/BSD-3-Clause |
|
* By Junnan Li |
|
* Based on timm code base |
|
* https://github.com/rwightman/pytorch-image-models/tree/master/timm |
|
''' |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from functools import partial |
|
|
|
from timm.models.vision_transformer import _cfg, PatchEmbed |
|
from timm.models.registry import register_model |
|
from timm.models.layers import trunc_normal_, DropPath |
|
from timm.models.helpers import named_apply, adapt_input_conv |
|
|
|
from fairscale.nn.checkpoint.checkpoint_activations import checkpoint_wrapper |
|
|
|
class Mlp(nn.Module): |
|
""" MLP as used in Vision Transformer, MLP-Mixer and related networks |
|
""" |
|
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): |
|
super().__init__() |
|
out_features = out_features or in_features |
|
hidden_features = hidden_features or in_features |
|
self.fc1 = nn.Linear(in_features, hidden_features) |
|
self.act = act_layer() |
|
self.fc2 = nn.Linear(hidden_features, out_features) |
|
self.drop = nn.Dropout(drop) |
|
|
|
def forward(self, x): |
|
x = self.fc1(x) |
|
x = self.act(x) |
|
x = self.drop(x) |
|
x = self.fc2(x) |
|
x = self.drop(x) |
|
return x |
|
|
|
|
|
class Attention(nn.Module): |
|
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.): |
|
super().__init__() |
|
self.num_heads = num_heads |
|
head_dim = dim // num_heads |
|
|
|
self.scale = qk_scale or head_dim ** -0.5 |
|
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) |
|
self.attn_drop = nn.Dropout(attn_drop) |
|
self.proj = nn.Linear(dim, dim) |
|
self.proj_drop = nn.Dropout(proj_drop) |
|
self.attn_gradients = None |
|
self.attention_map = None |
|
|
|
def save_attn_gradients(self, attn_gradients): |
|
self.attn_gradients = attn_gradients |
|
|
|
def get_attn_gradients(self): |
|
return self.attn_gradients |
|
|
|
def save_attention_map(self, attention_map): |
|
self.attention_map = attention_map |
|
|
|
def get_attention_map(self): |
|
return self.attention_map |
|
|
|
def forward(self, x, register_hook=False): |
|
B, N, C = x.shape |
|
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) |
|
q, k, v = qkv[0], qkv[1], qkv[2] |
|
|
|
attn = (q @ k.transpose(-2, -1)) * self.scale |
|
attn = attn.softmax(dim=-1) |
|
attn = self.attn_drop(attn) |
|
|
|
if register_hook: |
|
self.save_attention_map(attn) |
|
attn.register_hook(self.save_attn_gradients) |
|
|
|
x = (attn @ v).transpose(1, 2).reshape(B, N, C) |
|
x = self.proj(x) |
|
x = self.proj_drop(x) |
|
return x |
|
|
|
|
|
class Block(nn.Module): |
|
|
|
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., |
|
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, use_grad_checkpointing=False): |
|
super().__init__() |
|
self.norm1 = norm_layer(dim) |
|
self.attn = Attention( |
|
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop) |
|
|
|
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() |
|
self.norm2 = norm_layer(dim) |
|
mlp_hidden_dim = int(dim * mlp_ratio) |
|
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) |
|
|
|
if use_grad_checkpointing: |
|
self.attn = checkpoint_wrapper(self.attn) |
|
self.mlp = checkpoint_wrapper(self.mlp) |
|
|
|
def forward(self, x, register_hook=False): |
|
x = x + self.drop_path(self.attn(self.norm1(x), register_hook=register_hook)) |
|
x = x + self.drop_path(self.mlp(self.norm2(x))) |
|
return x |
|
|
|
|
|
class VisionTransformer(nn.Module): |
|
""" Vision Transformer |
|
A PyTorch impl of : `An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale` - |
|
https://arxiv.org/abs/2010.11929 |
|
""" |
|
def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dim=768, depth=12, |
|
num_heads=12, mlp_ratio=4., qkv_bias=True, qk_scale=None, representation_size=None, |
|
drop_rate=0., attn_drop_rate=0., drop_path_rate=0., norm_layer=None, |
|
use_grad_checkpointing=False, ckpt_layer=0): |
|
""" |
|
Args: |
|
img_size (int, tuple): input image size |
|
patch_size (int, tuple): patch size |
|
in_chans (int): number of input channels |
|
num_classes (int): number of classes for classification head |
|
embed_dim (int): embedding dimension |
|
depth (int): depth of transformer |
|
num_heads (int): number of attention heads |
|
mlp_ratio (int): ratio of mlp hidden dim to embedding dim |
|
qkv_bias (bool): enable bias for qkv if True |
|
qk_scale (float): override default qk scale of head_dim ** -0.5 if set |
|
representation_size (Optional[int]): enable and set representation layer (pre-logits) to this value if set |
|
drop_rate (float): dropout rate |
|
attn_drop_rate (float): attention dropout rate |
|
drop_path_rate (float): stochastic depth rate |
|
norm_layer: (nn.Module): normalization layer |
|
""" |
|
super().__init__() |
|
self.num_features = self.embed_dim = embed_dim |
|
norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6) |
|
|
|
self.patch_embed = PatchEmbed( |
|
img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim) |
|
|
|
num_patches = self.patch_embed.num_patches |
|
|
|
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) |
|
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim)) |
|
self.pos_drop = nn.Dropout(p=drop_rate) |
|
|
|
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] |
|
self.blocks = nn.ModuleList([ |
|
Block( |
|
dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, |
|
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer, |
|
use_grad_checkpointing=(use_grad_checkpointing and i>=depth-ckpt_layer) |
|
) |
|
for i in range(depth)]) |
|
self.norm = norm_layer(embed_dim) |
|
|
|
trunc_normal_(self.pos_embed, std=.02) |
|
trunc_normal_(self.cls_token, std=.02) |
|
self.apply(self._init_weights) |
|
|
|
def _init_weights(self, m): |
|
if isinstance(m, nn.Linear): |
|
trunc_normal_(m.weight, std=.02) |
|
if isinstance(m, nn.Linear) and m.bias is not None: |
|
nn.init.constant_(m.bias, 0) |
|
elif isinstance(m, nn.LayerNorm): |
|
nn.init.constant_(m.bias, 0) |
|
nn.init.constant_(m.weight, 1.0) |
|
|
|
@torch.jit.ignore |
|
def no_weight_decay(self): |
|
return {'pos_embed', 'cls_token'} |
|
|
|
def forward(self, x, register_blk=-1): |
|
B = x.shape[0] |
|
x = self.patch_embed(x) |
|
|
|
cls_tokens = self.cls_token.expand(B, -1, -1) |
|
x = torch.cat((cls_tokens, x), dim=1) |
|
|
|
x = x + self.pos_embed[:,:x.size(1),:] |
|
x = self.pos_drop(x) |
|
|
|
for i,blk in enumerate(self.blocks): |
|
x = blk(x, register_blk==i) |
|
x = self.norm(x) |
|
|
|
return x |
|
|
|
@torch.jit.ignore() |
|
def load_pretrained(self, checkpoint_path, prefix=''): |
|
_load_weights(self, checkpoint_path, prefix) |
|
|
|
|
|
@torch.no_grad() |
|
def _load_weights(model: VisionTransformer, checkpoint_path: str, prefix: str = ''): |
|
""" Load weights from .npz checkpoints for official Google Brain Flax implementation |
|
""" |
|
import numpy as np |
|
|
|
def _n2p(w, t=True): |
|
if w.ndim == 4 and w.shape[0] == w.shape[1] == w.shape[2] == 1: |
|
w = w.flatten() |
|
if t: |
|
if w.ndim == 4: |
|
w = w.transpose([3, 2, 0, 1]) |
|
elif w.ndim == 3: |
|
w = w.transpose([2, 0, 1]) |
|
elif w.ndim == 2: |
|
w = w.transpose([1, 0]) |
|
return torch.from_numpy(w) |
|
|
|
w = np.load(checkpoint_path) |
|
if not prefix and 'opt/target/embedding/kernel' in w: |
|
prefix = 'opt/target/' |
|
|
|
if hasattr(model.patch_embed, 'backbone'): |
|
|
|
backbone = model.patch_embed.backbone |
|
stem_only = not hasattr(backbone, 'stem') |
|
stem = backbone if stem_only else backbone.stem |
|
stem.conv.weight.copy_(adapt_input_conv(stem.conv.weight.shape[1], _n2p(w[f'{prefix}conv_root/kernel']))) |
|
stem.norm.weight.copy_(_n2p(w[f'{prefix}gn_root/scale'])) |
|
stem.norm.bias.copy_(_n2p(w[f'{prefix}gn_root/bias'])) |
|
if not stem_only: |
|
for i, stage in enumerate(backbone.stages): |
|
for j, block in enumerate(stage.blocks): |
|
bp = f'{prefix}block{i + 1}/unit{j + 1}/' |
|
for r in range(3): |
|
getattr(block, f'conv{r + 1}').weight.copy_(_n2p(w[f'{bp}conv{r + 1}/kernel'])) |
|
getattr(block, f'norm{r + 1}').weight.copy_(_n2p(w[f'{bp}gn{r + 1}/scale'])) |
|
getattr(block, f'norm{r + 1}').bias.copy_(_n2p(w[f'{bp}gn{r + 1}/bias'])) |
|
if block.downsample is not None: |
|
block.downsample.conv.weight.copy_(_n2p(w[f'{bp}conv_proj/kernel'])) |
|
block.downsample.norm.weight.copy_(_n2p(w[f'{bp}gn_proj/scale'])) |
|
block.downsample.norm.bias.copy_(_n2p(w[f'{bp}gn_proj/bias'])) |
|
embed_conv_w = _n2p(w[f'{prefix}embedding/kernel']) |
|
else: |
|
embed_conv_w = adapt_input_conv( |
|
model.patch_embed.proj.weight.shape[1], _n2p(w[f'{prefix}embedding/kernel'])) |
|
model.patch_embed.proj.weight.copy_(embed_conv_w) |
|
model.patch_embed.proj.bias.copy_(_n2p(w[f'{prefix}embedding/bias'])) |
|
model.cls_token.copy_(_n2p(w[f'{prefix}cls'], t=False)) |
|
pos_embed_w = _n2p(w[f'{prefix}Transformer/posembed_input/pos_embedding'], t=False) |
|
if pos_embed_w.shape != model.pos_embed.shape: |
|
pos_embed_w = resize_pos_embed( |
|
pos_embed_w, model.pos_embed, getattr(model, 'num_tokens', 1), model.patch_embed.grid_size) |
|
model.pos_embed.copy_(pos_embed_w) |
|
model.norm.weight.copy_(_n2p(w[f'{prefix}Transformer/encoder_norm/scale'])) |
|
model.norm.bias.copy_(_n2p(w[f'{prefix}Transformer/encoder_norm/bias'])) |
|
|
|
|
|
|
|
|
|
|
|
|
|
for i, block in enumerate(model.blocks.children()): |
|
block_prefix = f'{prefix}Transformer/encoderblock_{i}/' |
|
mha_prefix = block_prefix + 'MultiHeadDotProductAttention_1/' |
|
block.norm1.weight.copy_(_n2p(w[f'{block_prefix}LayerNorm_0/scale'])) |
|
block.norm1.bias.copy_(_n2p(w[f'{block_prefix}LayerNorm_0/bias'])) |
|
block.attn.qkv.weight.copy_(torch.cat([ |
|
_n2p(w[f'{mha_prefix}{n}/kernel'], t=False).flatten(1).T for n in ('query', 'key', 'value')])) |
|
block.attn.qkv.bias.copy_(torch.cat([ |
|
_n2p(w[f'{mha_prefix}{n}/bias'], t=False).reshape(-1) for n in ('query', 'key', 'value')])) |
|
block.attn.proj.weight.copy_(_n2p(w[f'{mha_prefix}out/kernel']).flatten(1)) |
|
block.attn.proj.bias.copy_(_n2p(w[f'{mha_prefix}out/bias'])) |
|
for r in range(2): |
|
getattr(block.mlp, f'fc{r + 1}').weight.copy_(_n2p(w[f'{block_prefix}MlpBlock_3/Dense_{r}/kernel'])) |
|
getattr(block.mlp, f'fc{r + 1}').bias.copy_(_n2p(w[f'{block_prefix}MlpBlock_3/Dense_{r}/bias'])) |
|
block.norm2.weight.copy_(_n2p(w[f'{block_prefix}LayerNorm_2/scale'])) |
|
block.norm2.bias.copy_(_n2p(w[f'{block_prefix}LayerNorm_2/bias'])) |
|
|
|
|
|
def interpolate_pos_embed(pos_embed_checkpoint, visual_encoder): |
|
|
|
embedding_size = pos_embed_checkpoint.shape[-1] |
|
num_patches = visual_encoder.patch_embed.num_patches |
|
num_extra_tokens = visual_encoder.pos_embed.shape[-2] - num_patches |
|
|
|
orig_size = int((pos_embed_checkpoint.shape[-2] - num_extra_tokens) ** 0.5) |
|
|
|
new_size = int(num_patches ** 0.5) |
|
|
|
if orig_size!=new_size: |
|
|
|
extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens] |
|
|
|
pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:] |
|
pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2) |
|
pos_tokens = torch.nn.functional.interpolate( |
|
pos_tokens, size=(new_size, new_size), mode='bicubic', align_corners=False) |
|
pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2) |
|
new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1) |
|
print('reshape position embedding from %d to %d'%(orig_size ** 2,new_size ** 2)) |
|
|
|
return new_pos_embed |
|
else: |
|
return pos_embed_checkpoint |