flexthink commited on
Commit
6e4ace0
·
1 Parent(s): c33d085

Update README

Browse files
Files changed (1) hide show
  1. README.md +115 -0
README.md CHANGED
@@ -1,3 +1,118 @@
1
  ---
2
  license: apache-2.0
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: apache-2.0
3
  ---
4
+ --
5
+ language: "en"
6
+ thumbnail:
7
+ tags:
8
+ - speechbrain
9
+ - tts
10
+ - mos
11
+ license: "apache-2.0"
12
+ datasets:
13
+ - somos
14
+ metrics:
15
+ - Pearson R
16
+ inference: false
17
+ ---
18
+ <iframe src="https://ghbtns.com/github-btn.html?user=speechbrain&repo=speechbrain&type=star&count=true&size=large&v=2" frameborder="0" scrolling="0" width="170" height="30" title="GitHub"></iframe>
19
+ <br/><br/>
20
+
21
+ # TTS MOS estimation with WavLM for LJSpeech
22
+
23
+ This repository provides all the necessary tools to perform TTS quality evaluation using a WavLM finetuning model. The model
24
+ attempts to predict the Mean Opinion Score, i.e. averaged human ratings on a scale from 1 to 5.
25
+
26
+ The model was trained using the SOMOS dataset from Samsung:
27
+ https://paperswithcode.com/dataset/somos
28
+
29
+
30
+ For a better experience, we encourage you to learn more about
31
+ [SpeechBrain](https://speechbrain.github.io). The model performance on SOMOS test set is:
32
+
33
+ | Release | Pearson R |
34
+ |:----------:|:--------------:|
35
+ | 2023-02-29 | 0.904 |
36
+
37
+
38
+ ## Pipeline description
39
+
40
+ This system is composed of an WavLM model and a simple forward transformer followed by statistical pooling. The model was trained by first pre-conditioning the model on a simple classifier that attempts to determine whether the rating is above a certain threshold and then fine-tuned on the regression task.
41
+
42
+
43
+
44
+ ## Install SpeechBrain
45
+
46
+ First of all, please install the **development** version of SpeechBrain with the following command:
47
+
48
+ ```
49
+ pip install git+https://github.com/speechbrain/speechbrain.git@$develop
50
+ ```
51
+
52
+ Please notice that we encourage you to read our tutorials and learn more about
53
+ [SpeechBrain](https://speechbrain.github.io).
54
+
55
+ ### Perform MOS estimation
56
+ The `RegressionModelSpeechEvaluator` interface is used as a high-level wrapper for the MOS estimation task
57
+
58
+ ```python
59
+ from speechbrain.inference.eval import RegressionModelSpeechEvaluator
60
+ source = "flexthink/ttseval-wavlm-transformer"
61
+ eval = RegressionModelSpeechEvaluator.from_hparams(source)
62
+
63
+ file_names = [
64
+ "LJ002-0181_110.wav",
65
+ "booksent_2012_0005_001.wav",
66
+ ]
67
+ prediction = eval.evaluate_files(file_names)
68
+ ```
69
+
70
+ The prediction is a `SpeechEvaluationResult` named tuple instance where `prediction.score` and
71
+ `predictions.details["score"]` both indicate the predicted Mean Opinion Score.
72
+
73
+ ### Inference on GPU
74
+ To perform inference on the GPU, add `run_opts={"device":"cuda"}` when calling the `from_hparams` method.
75
+
76
+ ### Training
77
+ The model was trained with SpeechBrain.
78
+
79
+ To train it from scratch follows these steps:
80
+ 1. Clone SpeechBrain:
81
+ ```bash
82
+ git clone https://github.com/speechbrain/speechbrain/
83
+ ```
84
+ 2. Install it:
85
+ ```
86
+ cd speechbrain
87
+ pip install -r requirements.txt
88
+ pip install -e .
89
+ ```
90
+
91
+ 3. Run Training:
92
+ ```
93
+ cd recipes/SOMOS/ttseval
94
+ python train.py hparams/train.yaml --data_folder=your_data_folder
95
+ ```
96
+
97
+ ### Limitations
98
+ The SpeechBrain team does not provide any warranty on the performance achieved by this model when used on other datasets.
99
+
100
+ # **Citing SpeechBrain**
101
+ Please, cite SpeechBrain if you use it for your research or business.
102
+
103
+ ```bibtex
104
+ @misc{speechbrain,
105
+ title={{SpeechBrain}: A General-Purpose Speech Toolkit},
106
+ author={Mirco Ravanelli and Titouan Parcollet and Peter Plantinga and Aku Rouhe and Samuele Cornell and Loren Lugosch and Cem Subakan and Nauman Dawalatabad and Abdelwahab Heba and Jianyuan Zhong and Ju-Chieh Chou and Sung-Lin Yeh and Szu-Wei Fu and Chien-Feng Liao and Elena Rastorgueva and François Grondin and William Aris and Hwidong Na and Yan Gao and Renato De Mori and Yoshua Bengio},
107
+ year={2021},
108
+ eprint={2106.04624},
109
+ archivePrefix={arXiv},
110
+ primaryClass={eess.AS},
111
+ note={arXiv:2106.04624}
112
+ }
113
+ ```
114
+
115
+ # **About SpeechBrain**
116
+ - Website: https://speechbrain.github.io/
117
+ - Code: https://github.com/speechbrain/speechbrain/
118
+ - HuggingFace: https://huggingface.co/speechbrain/