nipunsadvilkar commited on
Commit
ee4b0e7
1 Parent(s): c746bb2

Saving weights and logs of step 500

Browse files
Files changed (3) hide show
  1. flax_model.msgpack +3 -0
  2. run_mlm_flax.py +670 -0
  3. tokenizer.json +0 -0
flax_model.msgpack ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f1f30bd95331d281308f6cb94e74bec0d82ebc06684501d536c8d38952e09abb
3
+ size 498796983
run_mlm_flax.py ADDED
@@ -0,0 +1,670 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+ # coding=utf-8
3
+ # Copyright 2021 The HuggingFace Team All rights reserved.
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+ """
17
+ Fine-tuning the library models for masked language modeling (BERT, ALBERT, RoBERTa...) with whole word masking on a
18
+ text file or a dataset.
19
+
20
+ Here is the full list of checkpoints on the hub that can be fine-tuned by this script:
21
+ https://huggingface.co/models?filter=masked-lm
22
+ """
23
+ import logging
24
+ import os
25
+ import sys
26
+ import time
27
+ from dataclasses import dataclass, field
28
+
29
+ # You can also adapt this script on your own masked language modeling task. Pointers for this are left as comments.
30
+ from pathlib import Path
31
+ from typing import Dict, List, Optional, Tuple
32
+
33
+ import numpy as np
34
+ from datasets import load_dataset
35
+ from tqdm import tqdm
36
+
37
+ import flax
38
+ import jax
39
+ import jax.numpy as jnp
40
+ import optax
41
+ from flax import jax_utils, traverse_util
42
+ from flax.training import train_state
43
+ from flax.training.common_utils import get_metrics, onehot, shard
44
+ from transformers import (
45
+ CONFIG_MAPPING,
46
+ FLAX_MODEL_FOR_MASKED_LM_MAPPING,
47
+ AutoConfig,
48
+ AutoTokenizer,
49
+ FlaxAutoModelForMaskedLM,
50
+ HfArgumentParser,
51
+ PreTrainedTokenizerBase,
52
+ TensorType,
53
+ TrainingArguments,
54
+ is_tensorboard_available,
55
+ set_seed,
56
+ )
57
+
58
+
59
+ MODEL_CONFIG_CLASSES = list(FLAX_MODEL_FOR_MASKED_LM_MAPPING.keys())
60
+ MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
61
+
62
+
63
+ @dataclass
64
+ class ModelArguments:
65
+ """
66
+ Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch.
67
+ """
68
+
69
+ model_name_or_path: Optional[str] = field(
70
+ default=None,
71
+ metadata={
72
+ "help": "The model checkpoint for weights initialization."
73
+ "Don't set if you want to train a model from scratch."
74
+ },
75
+ )
76
+ model_type: Optional[str] = field(
77
+ default=None,
78
+ metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(MODEL_TYPES)},
79
+ )
80
+ config_name: Optional[str] = field(
81
+ default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
82
+ )
83
+ tokenizer_name: Optional[str] = field(
84
+ default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
85
+ )
86
+ cache_dir: Optional[str] = field(
87
+ default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from s3"}
88
+ )
89
+ use_fast_tokenizer: bool = field(
90
+ default=True,
91
+ metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
92
+ )
93
+ dtype: Optional[str] = field(
94
+ default="float32",
95
+ metadata={
96
+ "help": "Floating-point format in which the model weights should be initialized and trained. Choose one of `[float32, float16, bfloat16]`."
97
+ },
98
+ )
99
+
100
+
101
+ @dataclass
102
+ class DataTrainingArguments:
103
+ """
104
+ Arguments pertaining to what data we are going to input our model for training and eval.
105
+ """
106
+
107
+ dataset_name: Optional[str] = field(
108
+ default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
109
+ )
110
+ dataset_config_name: Optional[str] = field(
111
+ default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
112
+ )
113
+ train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a text file)."})
114
+ validation_file: Optional[str] = field(
115
+ default=None,
116
+ metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."},
117
+ )
118
+ train_ref_file: Optional[str] = field(
119
+ default=None,
120
+ metadata={"help": "An optional input train ref data file for whole word masking in Chinese."},
121
+ )
122
+ validation_ref_file: Optional[str] = field(
123
+ default=None,
124
+ metadata={"help": "An optional input validation ref data file for whole word masking in Chinese."},
125
+ )
126
+ overwrite_cache: bool = field(
127
+ default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
128
+ )
129
+ validation_split_percentage: Optional[int] = field(
130
+ default=5,
131
+ metadata={
132
+ "help": "The percentage of the train set used as validation set in case there's no validation split"
133
+ },
134
+ )
135
+ max_seq_length: Optional[int] = field(
136
+ default=None,
137
+ metadata={
138
+ "help": "The maximum total input sequence length after tokenization. Sequences longer "
139
+ "than this will be truncated. Default to the max input length of the model."
140
+ },
141
+ )
142
+ preprocessing_num_workers: Optional[int] = field(
143
+ default=None,
144
+ metadata={"help": "The number of processes to use for the preprocessing."},
145
+ )
146
+ mlm_probability: float = field(
147
+ default=0.15, metadata={"help": "Ratio of tokens to mask for masked language modeling loss"}
148
+ )
149
+ pad_to_max_length: bool = field(
150
+ default=False,
151
+ metadata={
152
+ "help": "Whether to pad all samples to `max_seq_length`. "
153
+ "If False, will pad the samples dynamically when batching to the maximum length in the batch."
154
+ },
155
+ )
156
+ line_by_line: bool = field(
157
+ default=False,
158
+ metadata={"help": "Whether distinct lines of text in the dataset are to be handled as distinct sequences."},
159
+ )
160
+
161
+ def __post_init__(self):
162
+ if self.dataset_name is None and self.train_file is None and self.validation_file is None:
163
+ raise ValueError("Need either a dataset name or a training/validation file.")
164
+ else:
165
+ if self.train_file is not None:
166
+ extension = self.train_file.split(".")[-1]
167
+ assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file."
168
+ if self.validation_file is not None:
169
+ extension = self.validation_file.split(".")[-1]
170
+ assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file."
171
+
172
+
173
+ @flax.struct.dataclass
174
+ class FlaxDataCollatorForLanguageModeling:
175
+ """
176
+ Data collator used for language modeling. Inputs are dynamically padded to the maximum length of a batch if they
177
+ are not all of the same length.
178
+
179
+ Args:
180
+ tokenizer (:class:`~transformers.PreTrainedTokenizer` or :class:`~transformers.PreTrainedTokenizerFast`):
181
+ The tokenizer used for encoding the data.
182
+ mlm_probability (:obj:`float`, `optional`, defaults to 0.15):
183
+ The probability with which to (randomly) mask tokens in the input.
184
+
185
+ .. note::
186
+
187
+ For best performance, this data collator should be used with a dataset having items that are dictionaries or
188
+ BatchEncoding, with the :obj:`"special_tokens_mask"` key, as returned by a
189
+ :class:`~transformers.PreTrainedTokenizer` or a :class:`~transformers.PreTrainedTokenizerFast` with the
190
+ argument :obj:`return_special_tokens_mask=True`.
191
+ """
192
+
193
+ tokenizer: PreTrainedTokenizerBase
194
+ mlm_probability: float = 0.15
195
+
196
+ def __post_init__(self):
197
+ if self.tokenizer.mask_token is None:
198
+ raise ValueError(
199
+ "This tokenizer does not have a mask token which is necessary for masked language modeling. "
200
+ "You should pass `mlm=False` to train on causal language modeling instead."
201
+ )
202
+
203
+ def __call__(self, examples: List[Dict[str, np.ndarray]], pad_to_multiple_of: int) -> Dict[str, np.ndarray]:
204
+ # Handle dict or lists with proper padding and conversion to tensor.
205
+ batch = self.tokenizer.pad(examples, pad_to_multiple_of=pad_to_multiple_of, return_tensors=TensorType.NUMPY)
206
+
207
+ # If special token mask has been preprocessed, pop it from the dict.
208
+ special_tokens_mask = batch.pop("special_tokens_mask", None)
209
+
210
+ batch["input_ids"], batch["labels"] = self.mask_tokens(
211
+ batch["input_ids"], special_tokens_mask=special_tokens_mask
212
+ )
213
+ return batch
214
+
215
+ def mask_tokens(
216
+ self, inputs: np.ndarray, special_tokens_mask: Optional[np.ndarray]
217
+ ) -> Tuple[jnp.ndarray, jnp.ndarray]:
218
+ """
219
+ Prepare masked tokens inputs/labels for masked language modeling: 80% MASK, 10% random, 10% original.
220
+ """
221
+ labels = inputs.copy()
222
+ # We sample a few tokens in each sequence for MLM training (with probability `self.mlm_probability`)
223
+ probability_matrix = np.full(labels.shape, self.mlm_probability)
224
+ special_tokens_mask = special_tokens_mask.astype("bool")
225
+
226
+ probability_matrix[special_tokens_mask] = 0.0
227
+ masked_indices = np.random.binomial(1, probability_matrix).astype("bool")
228
+ labels[~masked_indices] = -100 # We only compute loss on masked tokens
229
+
230
+ # 80% of the time, we replace masked input tokens with tokenizer.mask_token ([MASK])
231
+ indices_replaced = np.random.binomial(1, np.full(labels.shape, 0.8)).astype("bool") & masked_indices
232
+ inputs[indices_replaced] = self.tokenizer.convert_tokens_to_ids(self.tokenizer.mask_token)
233
+
234
+ # 10% of the time, we replace masked input tokens with random word
235
+ indices_random = np.random.binomial(1, np.full(labels.shape, 0.5)).astype("bool")
236
+ indices_random &= masked_indices & ~indices_replaced
237
+
238
+ random_words = np.random.randint(self.tokenizer.vocab_size, size=labels.shape, dtype="i4")
239
+ inputs[indices_random] = random_words[indices_random]
240
+
241
+ # The rest of the time (10% of the time) we keep the masked input tokens unchanged
242
+ return inputs, labels
243
+
244
+
245
+ def generate_batch_splits(samples_idx: jnp.ndarray, batch_size: int) -> jnp.ndarray:
246
+ num_samples = len(samples_idx)
247
+ samples_to_remove = num_samples % batch_size
248
+
249
+ if samples_to_remove != 0:
250
+ samples_idx = samples_idx[:-samples_to_remove]
251
+ sections_split = num_samples // batch_size
252
+ batch_idx = np.split(samples_idx, sections_split)
253
+ return batch_idx
254
+
255
+
256
+ def write_train_metric(summary_writer, train_metrics, train_time, step):
257
+ summary_writer.scalar("train_time", train_time, step)
258
+
259
+ train_metrics = get_metrics(train_metrics)
260
+ for key, vals in train_metrics.items():
261
+ tag = f"train_{key}"
262
+ for i, val in enumerate(vals):
263
+ summary_writer.scalar(tag, val, step - len(vals) + i + 1)
264
+
265
+
266
+ def write_eval_metric(summary_writer, eval_metrics, step):
267
+ for metric_name, value in eval_metrics.items():
268
+ summary_writer.scalar(f"eval_{metric_name}", value, step)
269
+
270
+
271
+ if __name__ == "__main__":
272
+ # See all possible arguments in src/transformers/training_args.py
273
+ # or by passing the --help flag to this script.
274
+ # We now keep distinct sets of args, for a cleaner separation of concerns.
275
+
276
+ parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
277
+ if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
278
+ # If we pass only one argument to the script and it's the path to a json file,
279
+ # let's parse it to get our arguments.
280
+ model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
281
+ else:
282
+ model_args, data_args, training_args = parser.parse_args_into_dataclasses()
283
+
284
+ if (
285
+ os.path.exists(training_args.output_dir)
286
+ and os.listdir(training_args.output_dir)
287
+ and training_args.do_train
288
+ and not training_args.overwrite_output_dir
289
+ ):
290
+ raise ValueError(
291
+ f"Output directory ({training_args.output_dir}) already exists and is not empty."
292
+ "Use --overwrite_output_dir to overcome."
293
+ )
294
+
295
+ # Setup logging
296
+ logging.basicConfig(
297
+ format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
298
+ level="NOTSET",
299
+ datefmt="[%X]",
300
+ )
301
+
302
+ # Log on each process the small summary:
303
+ logger = logging.getLogger(__name__)
304
+
305
+ # Set the verbosity to info of the Transformers logger (on main process only):
306
+ logger.info(f"Training/evaluation parameters {training_args}")
307
+
308
+ # Set seed before initializing model.
309
+ set_seed(training_args.seed)
310
+
311
+ # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
312
+ # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
313
+ # (the dataset will be downloaded automatically from the datasets Hub).
314
+ #
315
+ # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
316
+ # 'text' is found. You can easily tweak this behavior (see below).
317
+ #
318
+ # In distributed training, the load_dataset function guarantees that only one local process can concurrently
319
+ # download the dataset.
320
+ if data_args.dataset_name is not None:
321
+ # Downloading and loading a dataset from the hub.
322
+ datasets = load_dataset(data_args.dataset_name, data_args.dataset_config_name, cache_dir=model_args.cache_dir)
323
+
324
+ if "validation" not in datasets.keys():
325
+ datasets["validation"] = load_dataset(
326
+ data_args.dataset_name,
327
+ data_args.dataset_config_name,
328
+ split=f"train[:{data_args.validation_split_percentage}%]",
329
+ cache_dir=model_args.cache_dir,
330
+ )
331
+ datasets["train"] = load_dataset(
332
+ data_args.dataset_name,
333
+ data_args.dataset_config_name,
334
+ split=f"train[{data_args.validation_split_percentage}%:]",
335
+ cache_dir=model_args.cache_dir,
336
+ )
337
+ else:
338
+ data_files = {}
339
+ if data_args.train_file is not None:
340
+ data_files["train"] = data_args.train_file
341
+ if data_args.validation_file is not None:
342
+ data_files["validation"] = data_args.validation_file
343
+ extension = data_args.train_file.split(".")[-1]
344
+ if extension == "txt":
345
+ extension = "text"
346
+ datasets = load_dataset(extension, data_files=data_files, cache_dir=model_args.cache_dir)
347
+ # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
348
+ # https://huggingface.co/docs/datasets/loading_datasets.html.
349
+
350
+ # Load pretrained model and tokenizer
351
+
352
+ # Distributed training:
353
+ # The .from_pretrained methods guarantee that only one local process can concurrently
354
+ # download model & vocab.
355
+ if model_args.config_name:
356
+ config = AutoConfig.from_pretrained(model_args.config_name, cache_dir=model_args.cache_dir)
357
+ elif model_args.model_name_or_path:
358
+ config = AutoConfig.from_pretrained(model_args.model_name_or_path, cache_dir=model_args.cache_dir)
359
+ else:
360
+ config = CONFIG_MAPPING[model_args.model_type]()
361
+ logger.warning("You are instantiating a new config instance from scratch.")
362
+
363
+ if model_args.tokenizer_name:
364
+ tokenizer = AutoTokenizer.from_pretrained(
365
+ model_args.tokenizer_name, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer
366
+ )
367
+ elif model_args.model_name_or_path:
368
+ tokenizer = AutoTokenizer.from_pretrained(
369
+ model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer
370
+ )
371
+ else:
372
+ raise ValueError(
373
+ "You are instantiating a new tokenizer from scratch. This is not supported by this script."
374
+ "You can do it from another script, save it, and load it from here, using --tokenizer_name."
375
+ )
376
+
377
+ # Preprocessing the datasets.
378
+ # First we tokenize all the texts.
379
+ if training_args.do_train:
380
+ column_names = datasets["train"].column_names
381
+ else:
382
+ column_names = datasets["validation"].column_names
383
+ text_column_name = "text" if "text" in column_names else column_names[0]
384
+
385
+ max_seq_length = min(data_args.max_seq_length, tokenizer.model_max_length)
386
+
387
+ if data_args.line_by_line:
388
+ # When using line_by_line, we just tokenize each nonempty line.
389
+ padding = "max_length" if data_args.pad_to_max_length else False
390
+
391
+ def tokenize_function(examples):
392
+ # Remove empty lines
393
+ examples = [line for line in examples if len(line) > 0 and not line.isspace()]
394
+ return tokenizer(
395
+ examples,
396
+ return_special_tokens_mask=True,
397
+ padding=padding,
398
+ truncation=True,
399
+ max_length=max_seq_length,
400
+ )
401
+
402
+ tokenized_datasets = datasets.map(
403
+ tokenize_function,
404
+ input_columns=[text_column_name],
405
+ batched=True,
406
+ num_proc=data_args.preprocessing_num_workers,
407
+ remove_columns=column_names,
408
+ load_from_cache_file=not data_args.overwrite_cache,
409
+ )
410
+
411
+ else:
412
+ # Otherwise, we tokenize every text, then concatenate them together before splitting them in smaller parts.
413
+ # We use `return_special_tokens_mask=True` because DataCollatorForLanguageModeling (see below) is more
414
+ # efficient when it receives the `special_tokens_mask`.
415
+ def tokenize_function(examples):
416
+ return tokenizer(examples[text_column_name], return_special_tokens_mask=True)
417
+
418
+ tokenized_datasets = datasets.map(
419
+ tokenize_function,
420
+ batched=True,
421
+ num_proc=data_args.preprocessing_num_workers,
422
+ remove_columns=column_names,
423
+ load_from_cache_file=not data_args.overwrite_cache,
424
+ )
425
+
426
+ # Main data processing function that will concatenate all texts from our dataset and generate chunks of
427
+ # max_seq_length.
428
+ def group_texts(examples):
429
+ # Concatenate all texts.
430
+ concatenated_examples = {k: sum(examples[k], []) for k in examples.keys()}
431
+ total_length = len(concatenated_examples[list(examples.keys())[0]])
432
+ # We drop the small remainder, we could add padding if the model supported it instead of this drop, you can
433
+ # customize this part to your needs.
434
+ total_length = (total_length // max_seq_length) * max_seq_length
435
+ # Split by chunks of max_len.
436
+ result = {
437
+ k: [t[i : i + max_seq_length] for i in range(0, total_length, max_seq_length)]
438
+ for k, t in concatenated_examples.items()
439
+ }
440
+ return result
441
+
442
+ # Note that with `batched=True`, this map processes 1,000 texts together, so group_texts throws away a
443
+ # remainder for each of those groups of 1,000 texts. You can adjust that batch_size here but a higher value
444
+ # might be slower to preprocess.
445
+ #
446
+ # To speed up this part, we use multiprocessing. See the documentation of the map method for more information:
447
+ # https://huggingface.co/docs/datasets/package_reference/main_classes.html#datasets.Dataset.map
448
+ tokenized_datasets = tokenized_datasets.map(
449
+ group_texts,
450
+ batched=True,
451
+ num_proc=data_args.preprocessing_num_workers,
452
+ load_from_cache_file=not data_args.overwrite_cache,
453
+ )
454
+
455
+ # Enable tensorboard only on the master node
456
+ has_tensorboard = is_tensorboard_available()
457
+ if has_tensorboard and jax.process_index() == 0:
458
+ try:
459
+ from flax.metrics.tensorboard import SummaryWriter
460
+
461
+ summary_writer = SummaryWriter(log_dir=Path(training_args.output_dir))
462
+ except ImportError as ie:
463
+ has_tensorboard = False
464
+ logger.warning(
465
+ f"Unable to display metrics through TensorBoard because some package are not installed: {ie}"
466
+ )
467
+ else:
468
+ logger.warning(
469
+ "Unable to display metrics through TensorBoard because the package is not installed: "
470
+ "Please run pip install tensorboard to enable."
471
+ )
472
+
473
+ # Data collator
474
+ # This one will take care of randomly masking the tokens.
475
+ data_collator = FlaxDataCollatorForLanguageModeling(tokenizer=tokenizer, mlm_probability=data_args.mlm_probability)
476
+
477
+ # Initialize our training
478
+ rng = jax.random.PRNGKey(training_args.seed)
479
+ dropout_rngs = jax.random.split(rng, jax.local_device_count())
480
+
481
+ model = FlaxAutoModelForMaskedLM.from_config(config, seed=training_args.seed, dtype=getattr(jnp, model_args.dtype))
482
+
483
+ # Store some constant
484
+ num_epochs = int(training_args.num_train_epochs)
485
+ train_batch_size = int(training_args.per_device_train_batch_size) * jax.device_count()
486
+ eval_batch_size = int(training_args.per_device_eval_batch_size) * jax.device_count()
487
+
488
+ num_train_steps = len(tokenized_datasets["train"]) // train_batch_size * num_epochs
489
+
490
+ # Create learning rate schedule
491
+ warmup_fn = optax.linear_schedule(
492
+ init_value=0.0, end_value=training_args.learning_rate, transition_steps=training_args.warmup_steps
493
+ )
494
+ decay_fn = optax.linear_schedule(
495
+ init_value=training_args.learning_rate,
496
+ end_value=0,
497
+ transition_steps=num_train_steps - training_args.warmup_steps,
498
+ )
499
+ linear_decay_lr_schedule_fn = optax.join_schedules(
500
+ schedules=[warmup_fn, decay_fn], boundaries=[training_args.warmup_steps]
501
+ )
502
+
503
+ # We use Optax's "masking" functionality to not apply weight decay
504
+ # to bias and LayerNorm scale parameters. decay_mask_fn returns a
505
+ # mask boolean with the same structure as the parameters.
506
+ # The mask is True for parameters that should be decayed.
507
+ # Note that this mask is specifically adapted for FlaxBERT-like models.
508
+ # For other models, one should correct the layer norm parameter naming
509
+ # accordingly.
510
+ def decay_mask_fn(params):
511
+ flat_params = traverse_util.flatten_dict(params)
512
+ flat_mask = {path: (path[-1] != "bias" and path[-2:] != ("LayerNorm", "scale")) for path in flat_params}
513
+ return traverse_util.unflatten_dict(flat_mask)
514
+
515
+ # create adam optimizer
516
+ if training_args.adafactor:
517
+ # We use the default parameters here to initialize adafactor,
518
+ # For more details about the parameters please check https://github.com/deepmind/optax/blob/ed02befef9bf81cbbf236be3d2b0e032e9ed4a40/optax/_src/alias.py#L74
519
+ optimizer = optax.adafactor(
520
+ learning_rate=linear_decay_lr_schedule_fn,
521
+ )
522
+ else:
523
+ optimizer = optax.adamw(
524
+ learning_rate=linear_decay_lr_schedule_fn,
525
+ b1=training_args.adam_beta1,
526
+ b2=training_args.adam_beta2,
527
+ eps=training_args.adam_epsilon,
528
+ weight_decay=training_args.weight_decay,
529
+ mask=decay_mask_fn,
530
+ )
531
+
532
+ # Setup train state
533
+ state = train_state.TrainState.create(apply_fn=model.__call__, params=model.params, tx=optimizer)
534
+
535
+ # Define gradient update step fn
536
+ def train_step(state, batch, dropout_rng):
537
+ dropout_rng, new_dropout_rng = jax.random.split(dropout_rng)
538
+
539
+ def loss_fn(params):
540
+ labels = batch.pop("labels")
541
+
542
+ logits = state.apply_fn(**batch, params=params, dropout_rng=dropout_rng, train=True)[0]
543
+
544
+ # compute loss, ignore padded input tokens
545
+ label_mask = jnp.where(labels > 0, 1.0, 0.0)
546
+ loss = optax.softmax_cross_entropy(logits, onehot(labels, logits.shape[-1])) * label_mask
547
+
548
+ # take average
549
+ loss = loss.sum() / label_mask.sum()
550
+
551
+ return loss
552
+
553
+ grad_fn = jax.value_and_grad(loss_fn)
554
+ loss, grad = grad_fn(state.params)
555
+ grad = jax.lax.pmean(grad, "batch")
556
+ new_state = state.apply_gradients(grads=grad)
557
+
558
+ metrics = jax.lax.pmean(
559
+ {"loss": loss, "learning_rate": linear_decay_lr_schedule_fn(state.step)}, axis_name="batch"
560
+ )
561
+
562
+ return new_state, metrics, new_dropout_rng
563
+
564
+ # Create parallel version of the train step
565
+ p_train_step = jax.pmap(train_step, "batch", donate_argnums=(0,))
566
+
567
+ # Define eval fn
568
+ def eval_step(params, batch):
569
+ labels = batch.pop("labels")
570
+
571
+ logits = model(**batch, params=params, train=False)[0]
572
+
573
+ # compute loss, ignore padded input tokens
574
+ label_mask = jnp.where(labels > 0, 1.0, 0.0)
575
+ loss = optax.softmax_cross_entropy(logits, onehot(labels, logits.shape[-1])) * label_mask
576
+
577
+ # compute accuracy
578
+ accuracy = jnp.equal(jnp.argmax(logits, axis=-1), labels) * label_mask
579
+
580
+ # summarize metrics
581
+ metrics = {"loss": loss.sum(), "accuracy": accuracy.sum(), "normalizer": label_mask.sum()}
582
+ metrics = jax.lax.psum(metrics, axis_name="batch")
583
+
584
+ return metrics
585
+
586
+ p_eval_step = jax.pmap(eval_step, "batch", donate_argnums=(0,))
587
+
588
+ # Replicate the train state on each device
589
+ state = jax_utils.replicate(state)
590
+
591
+ train_time = 0
592
+ epochs = tqdm(range(num_epochs), desc=f"Epoch ... (1/{num_epochs})", position=0)
593
+ for epoch in epochs:
594
+ # ======================== Training ================================
595
+ train_start = time.time()
596
+ train_metrics = []
597
+
598
+ # Create sampling rng
599
+ rng, input_rng = jax.random.split(rng)
600
+
601
+ # Generate an epoch by shuffling sampling indices from the train dataset
602
+ num_train_samples = len(tokenized_datasets["train"])
603
+ train_samples_idx = jax.random.permutation(input_rng, jnp.arange(num_train_samples))
604
+ train_batch_idx = generate_batch_splits(train_samples_idx, train_batch_size)
605
+
606
+ # Gather the indexes for creating the batch and do a training step
607
+ for step, batch_idx in enumerate(tqdm(train_batch_idx, desc="Training...", position=1)):
608
+ samples = [tokenized_datasets["train"][int(idx)] for idx in batch_idx]
609
+ model_inputs = data_collator(samples, pad_to_multiple_of=16)
610
+
611
+ # Model forward
612
+ model_inputs = shard(model_inputs.data)
613
+ state, train_metric, dropout_rngs = p_train_step(state, model_inputs, dropout_rngs)
614
+ train_metrics.append(train_metric)
615
+
616
+ cur_step = epoch * (num_train_samples // train_batch_size) + step
617
+
618
+ if cur_step % training_args.logging_steps == 0 and cur_step > 0:
619
+ # Save metrics
620
+ train_metric = jax_utils.unreplicate(train_metric)
621
+ train_time += time.time() - train_start
622
+ if has_tensorboard and jax.process_index() == 0:
623
+ write_train_metric(summary_writer, train_metrics, train_time, cur_step)
624
+
625
+ epochs.write(
626
+ f"Step... ({cur_step} | Loss: {train_metric['loss']}, Learning Rate: {train_metric['learning_rate']})"
627
+ )
628
+
629
+ train_metrics = []
630
+
631
+ if cur_step % training_args.eval_steps == 0 and cur_step > 0:
632
+ # ======================== Evaluating ==============================
633
+ num_eval_samples = len(tokenized_datasets["validation"])
634
+ eval_samples_idx = jnp.arange(num_eval_samples)
635
+ eval_batch_idx = generate_batch_splits(eval_samples_idx, eval_batch_size)
636
+
637
+ eval_metrics = []
638
+ for i, batch_idx in enumerate(tqdm(eval_batch_idx, desc="Evaluating ...", position=2)):
639
+ samples = [tokenized_datasets["validation"][int(idx)] for idx in batch_idx]
640
+ model_inputs = data_collator(samples, pad_to_multiple_of=16)
641
+
642
+ # Model forward
643
+ model_inputs = shard(model_inputs.data)
644
+ metrics = p_eval_step(state.params, model_inputs)
645
+ eval_metrics.append(metrics)
646
+
647
+ # normalize eval metrics
648
+ eval_metrics = get_metrics(eval_metrics)
649
+ eval_metrics = jax.tree_map(jnp.sum, eval_metrics)
650
+ eval_normalizer = eval_metrics.pop("normalizer")
651
+ eval_metrics = jax.tree_map(lambda x: x / eval_normalizer, eval_metrics)
652
+
653
+ # Update progress bar
654
+ epochs.desc = f"Step... ({cur_step} | Loss: {eval_metrics['loss']}, Acc: {eval_metrics['accuracy']})"
655
+
656
+ # Save metrics
657
+ if has_tensorboard and jax.process_index() == 0:
658
+ cur_step = epoch * (len(tokenized_datasets["train"]) // train_batch_size)
659
+ write_eval_metric(summary_writer, eval_metrics, cur_step)
660
+
661
+ if cur_step % training_args.save_steps == 0 and cur_step > 0:
662
+ # save checkpoint after each epoch and push checkpoint to the hub
663
+ if jax.process_index() == 0:
664
+ params = jax.device_get(jax.tree_map(lambda x: x[0], state.params))
665
+ model.save_pretrained(
666
+ training_args.output_dir,
667
+ params=params,
668
+ push_to_hub=training_args.push_to_hub,
669
+ commit_message=f"Saving weights and logs of step {cur_step}",
670
+ )
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff