#!/usr/bin/env python | |
import kenlm | |
from datasets import load_dataset | |
from tqdm import tqdm | |
def pp(log_score, length): | |
return 10.0 ** (-log_score / length) | |
# http://dl.fbaipublicfiles.com/cc_net/lm/es.arpa.bin | |
model = kenlm.Model("es.arpa.bin") | |
mc4 = load_dataset("mc4", "es", streaming=True) | |
with open("mc4-es-perplexity.txt", "w") as f: | |
for sample in tqdm(mc4["train"].shuffle(buffer_size=100_000), total=416057992): | |
lines = sample["text"].split("\n") | |
doc_log_score, doc_length = 0, 0 | |
for line in lines: | |
log_score = model.score(line) | |
length = len(line.split()) + 1 | |
doc_log_score += log_score | |
doc_length += length | |
f.write(f"{pp(doc_log_score, doc_length)}\n") | |