sw32-seo's picture
CNF is added.
0db4000
import jax
from typing import Any, Callable, Sequence, Optional
from jax import lax, random, vmap, numpy as jnp
from jax.experimental.ode import odeint
import flax
from flax.training import train_state
from flax.core import freeze, unfreeze
from flax import linen as nn
from flax import serialization
import optax
import tensorflow_datasets as tfds
import numpy as np
# Define model
class CNN(nn.Module):
"""A simple CNN model."""
@nn.compact
def __call__(self, inputs):
x = inputs
x = nn.Conv(features=32, kernel_size=(3, 3))(x)
x = nn.relu(x)
x = nn.avg_pool(x, window_shape=(2, 2), strides=(2, 2))
x = nn.Conv(features=64, kernel_size=(3, 3))(x)
x = nn.relu(x)
x = nn.avg_pool(x, window_shape=(2, 2), strides=(2, 2))
x = x.reshape((x.shape[0], -1)) # flatten
x = nn.Dense(features=256)(x)
x = nn.relu(x)
x = nn.Dense(features=10)(x)
x = nn.log_softmax(x)
return x
# Define Residual Block
class ResBlock(nn.Module):
"""Single Resblock w/o downsample"""
@nn.compact
def __call__(self, inputs):
x = inputs
f_x = nn.relu(nn.GroupNorm(64)(x))
f_x = nn.Conv(features=64, kernel_size=(3, 3))(f_x)
f_x = nn.relu(nn.GroupNorm(64)(f_x))
f_x = nn.Conv(features=64, kernel_size=(3, 3))(f_x)
x = f_x + x
return x
class ResDownBlock(nn.Module):
"""Single ResBlock w/ downsample"""
@nn.compact
def __call__(self, inputs):
x = inputs
f_x = nn.relu(nn.GroupNorm(64)(x))
x = nn.Conv(features=64, kernel_size=(1, 1), strides=(2, 2))(x)
f_x = nn.Conv(features=64, kernel_size=(3, 3), strides=(2, 2))(f_x)
f_x = nn.relu(nn.GroupNorm(64)(f_x))
f_x = nn.Conv(features=64, kernel_size=(3, 3))(f_x)
x = f_x + x
return x
# Define Model for Mnist example in Neural ODE
class SmallResNet(nn.Module):
res_down1: Callable = ResDownBlock()
res_down2: Callable = ResDownBlock()
resblock1: Callable = ResBlock()
resblock2: Callable = ResBlock()
resblock3: Callable = ResBlock()
resblock4: Callable = ResBlock()
resblock5: Callable = ResBlock()
resblock6: Callable = ResBlock()
@nn.compact
def __call__(self, inputs):
x = inputs
x = nn.Conv(features=64, kernel_size=(3, 3))(x)
x = self.res_down1(x)
x = self.res_down2(x)
x = self.resblock1(x)
x = self.resblock2(x)
x = self.resblock3(x)
x = self.resblock4(x)
x = self.resblock5(x)
x = self.resblock6(x)
x = nn.GroupNorm(64)(x)
x = nn.relu(x)
x = nn.avg_pool(x, (1, 1))
x = x.reshape((x.shape[0], -1)) # flatten
x = nn.Dense(features=10)(x)
x = nn.log_softmax(x)
return x
# Define loss
def cross_entropy_loss(*, logits, labels):
one_hot_labels = jax.nn.one_hot(labels, num_classes=10)
return -jnp.mean(jnp.sum(one_hot_labels * logits, axis=-1))
# Metric computation
def compute_metrics(*, logits, labels):
loss = cross_entropy_loss(logits=logits, labels=labels)
accuracy = jnp.mean(jnp.argmax(logits, -1) == labels)
metrics = {
'loss': loss,
'accuracy': accuracy,
}
return metrics
def get_datasets():
"""Load MNIST train and test datasets into memory."""
ds_builder = tfds.builder('mnist')
ds_builder.download_and_prepare()
train_ds = tfds.as_numpy(ds_builder.as_dataset(split='train', batch_size=-1))
test_ds = tfds.as_numpy(ds_builder.as_dataset(split='test', batch_size=-1))
train_ds['image'] = jnp.float32(train_ds['image']) / 255.
test_ds['image'] = jnp.float32(test_ds['image']) / 255.
return train_ds, test_ds
def create_train_state(rng, learning_rate):
"""Creates initial 'TrainState'."""
cnn = SmallResNet()
params = cnn.init(rng, jnp.ones([1, 28, 28, 1]))['params']
tx = optax.adam(learning_rate)
return train_state.TrainState.create(
apply_fn=cnn.apply, params=params, tx=tx
)
# Training step
@jax.jit
def train_step(state, batch):
"""Train for a single step."""
def loss_fn(params):
logits = SmallResNet().apply({'params': params}, batch['image'])
loss = cross_entropy_loss(logits=logits, labels=batch['label'])
return loss, logits
grad_fn = jax.value_and_grad(loss_fn, has_aux=True)
(_, logits), grads = grad_fn(state.params)
state = state.apply_gradients(grads=grads)
metrics = compute_metrics(logits=logits, labels=batch['label'])
return state, metrics
# Evaluation step
@jax.jit
def eval_step(params, batch):
logits = SmallResNet().apply({'params': params}, batch['image'])
return compute_metrics(logits=logits, labels=batch['label'])
# Train function
def train_epoch(state, train_ds, batch_size, epoch, rng):
"""Train for a single epoch"""
train_ds_size = len(train_ds['image'])
steps_per_epoch = train_ds_size // batch_size
perms = jax.random.permutation(rng, len(train_ds['image']))
perms = perms[:steps_per_epoch * batch_size] # skip incomplete batch
perms = perms.reshape((steps_per_epoch, batch_size))
batch_metrics = []
for perm in perms:
batch = {k: v[perm, ...] for k, v in train_ds.items()}
state, metrics = train_step(state, batch)
batch_metrics.append(metrics)
# compute mean of metrics across each batch in epoch.
batch_metrics_np = jax.device_get(batch_metrics)
epoch_metrics_np = {
k: np.mean([metrics[k] for metrics in batch_metrics_np])
for k in batch_metrics_np[0]
}
print('train epoch: %d, loss: %.4f, accuracy: %.2f' % (
epoch, epoch_metrics_np['loss'], epoch_metrics_np['accuracy'] * 100
))
return state
# Eval function
def eval_model(params, test_ds):
metrics = eval_step(params, test_ds)
metrics = jax.device_get(metrics)
summary = jax.tree_map(lambda x: x.item(), metrics)
return summary['loss'], summary['accuracy']
if __name__ == '__main__':
train_ds, test_ds = get_datasets()
rng = jax.random.PRNGKey(0)
rng, init_rng = jax.random.split(rng)
learning_rate = 0.0001
state = create_train_state(init_rng, learning_rate)
del init_rng # Must not be used anymore.
num_epochs = 40
batch_size = 128
for epoch in range(1, num_epochs + 1):
rng, input_rng = jax.random.split(rng)
state = train_epoch(state, train_ds, batch_size, epoch, input_rng)
test_loss, test_accuracy = eval_model(state.params, test_ds)
print(' test epoch: %d, loss: %.2f, accuracy: %.2f' % (
epoch, test_loss, test_accuracy * 100
))