marcusinthesky commited on
Commit
290bfbe
1 Parent(s): 8ea8ce9

Upload weights

Browse files
README.md ADDED
@@ -0,0 +1,148 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ widget:
4
+ - src: >-
5
+ https://huggingface.co/datasets/mishig/sample_images/resolve/main/cat-dog-music.png
6
+ candidate_labels: playing music, playing sports
7
+ example_title: Cat & Dog
8
+ library_name: open_clip
9
+ datasets:
10
+ - mlfoundations/datacomp_pools
11
+ pipeline_tag: zero-shot-image-classification
12
+ ---
13
+ Original Repo https://huggingface.co/laion/CLIP-ViT-L-14-DataComp.XL-s13B-b90K
14
+
15
+ Added transformers supports
16
+ ```python
17
+ from transformers import CLIPProcessor, CLIPModel
18
+ model = CLIPModel.from_pretrained("Aixile/CLIP-ViT-L-14-DataComp.XL-s13B-b90K")
19
+ ```
20
+
21
+ # Model card for CLIP ViT-L-14 trained DataComp-1B
22
+
23
+ # Table of Contents
24
+
25
+ 1. [Model Details](#model-details)
26
+ 2. [Uses](#uses)
27
+ 3. [Training Details](#training-details)
28
+ 4. [Evaluation](#evaluation)
29
+ 5. [Acknowledgements](#acknowledgements)
30
+ 6. [Citation](#citation)
31
+ 7. [How To Get Started With the Model](#how-to-get-started-with-the-model)
32
+
33
+
34
+ # Model Details
35
+
36
+ ## Model Description
37
+
38
+ A CLIP ViT-L/14 model trained with the DataComp-1B (https://github.com/mlfoundations/datacomp) using OpenCLIP (https://github.com/mlfoundations/open_clip).
39
+
40
+ Model training done on the [stability.ai](https://stability.ai/) cluster.
41
+
42
+ # Uses
43
+
44
+ As per the original [OpenAI CLIP model card](https://github.com/openai/CLIP/blob/d50d76daa670286dd6cacf3bcd80b5e4823fc8e1/model-card.md), this model is intended as a research output for research communities. We hope that this model will enable researchers to better understand and explore zero-shot, arbitrary image classification. We also hope it can be used for interdisciplinary studies of the potential impact of such model.
45
+
46
+ The OpenAI CLIP paper includes a discussion of potential downstream impacts to provide an example for this sort of analysis. Additionally, the DataComp paper (https://arxiv.org/abs/2304.14108) include additional discussion as it relates specifically to the training dataset.
47
+
48
+ ## Direct Use
49
+
50
+ Zero-shot image classification, image and text retrieval, among others.
51
+
52
+ ## Downstream Use
53
+
54
+ Image classification and other image task fine-tuning, linear probe image classification, image generation guiding and conditioning, among others.
55
+
56
+ ## Out-of-Scope Use
57
+
58
+ As per the OpenAI models,
59
+
60
+ **Any** deployed use case of the model - whether commercial or not - is currently out of scope. Non-deployed use cases such as image search in a constrained environment, are also not recommended unless there is thorough in-domain testing of the model with a specific, fixed class taxonomy. This is because our safety assessment demonstrated a high need for task specific testing especially given the variability of CLIP’s performance with different class taxonomies. This makes untested and unconstrained deployment of the model in any use case currently potentially harmful.
61
+
62
+ Certain use cases which would fall under the domain of surveillance and facial recognition are always out-of-scope regardless of performance of the model. This is because the use of artificial intelligence for tasks such as these can be premature currently given the lack of testing norms and checks to ensure its fair use.
63
+
64
+ # Training Details
65
+
66
+ ## Training Data
67
+
68
+ This model was trained with the 1.4 Billion samples of the DataComp-1B dataset (https://arxiv.org/abs/2304.14108).
69
+
70
+ **IMPORTANT NOTE:** The motivation behind dataset creation is to democratize research and experimentation around large-scale multi-modal model training and handling of uncurated, large-scale datasets crawled from publically available internet. Our recommendation is therefore to use the dataset for research purposes. Be aware that this large-scale dataset is uncurated. Keep in mind that the uncurated nature of the dataset means that collected links may lead to strongly discomforting and disturbing content for a human viewer. Therefore, please use the demo links with caution and at your own risk. It is possible to extract a “safe” subset by filtering out samples based on the safety tags (using a customized trained NSFW classifier that we built). While this strongly reduces the chance for encountering potentially harmful content when viewing, we cannot entirely exclude the possibility for harmful content being still present in safe mode, so that the warning holds also there. We think that providing the dataset openly to broad research and other interested communities will allow for transparent investigation of benefits that come along with training large-scale models as well as pitfalls and dangers that may stay unreported or unnoticed when working with closed large datasets that remain restricted to a small community. Providing our dataset openly, we however do not recommend using it for creating ready-to-go industrial products, as the basic research about general properties and safety of such large-scale models, which we would like to encourage with this release, is still in progress.
71
+
72
+ ## Training Procedure
73
+
74
+ Please see https://arxiv.org/abs/2304.14108.
75
+
76
+ # Evaluation
77
+
78
+ Evaluation done on 38 datasets, using the [DataComp repo](https://github.com/mlfoundations/datacomp) and the [LAION CLIP Benchmark](https://github.com/LAION-AI/CLIP_benchmark).
79
+
80
+ ## Testing Data, Factors & Metrics
81
+
82
+ ### Testing Data
83
+
84
+ The testing is performed on a suite of 38 datasets. See our paper for more details (https://arxiv.org/abs/2304.14108).
85
+
86
+ ## Results
87
+
88
+ The model achieves a 79.2% zero-shot top-1 accuracy on ImageNet-1k. See our paper for more details and results (https://arxiv.org/abs/2304.14108).
89
+
90
+ # Acknowledgements
91
+
92
+ Acknowledging [stability.ai](https://stability.ai/) for the compute used to train this model.
93
+
94
+ # Citation
95
+
96
+ **BibTeX:**
97
+
98
+ DataComp
99
+ ```bibtex
100
+ @article{datacomp,
101
+ title={DataComp: In search of the next generation of multimodal datasets},
102
+ author={Samir Yitzhak Gadre, Gabriel Ilharco, Alex Fang, Jonathan Hayase, Georgios Smyrnis, Thao Nguyen, Ryan Marten, Mitchell Wortsman, Dhruba Ghosh, Jieyu Zhang, Eyal Orgad, Rahim Entezari, Giannis Daras, Sarah Pratt, Vivek Ramanujan, Yonatan Bitton, Kalyani Marathe, Stephen Mussmann, Richard Vencu, Mehdi Cherti, Ranjay Krishna, Pang Wei Koh, Olga Saukh, Alexander Ratner, Shuran Song, Hannaneh Hajishirzi, Ali Farhadi, Romain Beaumont, Sewoong Oh, Alex Dimakis, Jenia Jitsev, Yair Carmon, Vaishaal Shankar, Ludwig Schmidt},
103
+ journal={arXiv preprint arXiv:2304.14108},
104
+ year={2023}
105
+ }
106
+ ```
107
+
108
+
109
+ OpenAI CLIP paper
110
+ ```
111
+ @inproceedings{Radford2021LearningTV,
112
+ title={Learning Transferable Visual Models From Natural Language Supervision},
113
+ author={Alec Radford and Jong Wook Kim and Chris Hallacy and A. Ramesh and Gabriel Goh and Sandhini Agarwal and Girish Sastry and Amanda Askell and Pamela Mishkin and Jack Clark and Gretchen Krueger and Ilya Sutskever},
114
+ booktitle={ICML},
115
+ year={2021}
116
+ }
117
+ ```
118
+
119
+ OpenCLIP software
120
+ ```
121
+ @software{ilharco_gabriel_2021_5143773,
122
+ author = {Ilharco, Gabriel and
123
+ Wortsman, Mitchell and
124
+ Wightman, Ross and
125
+ Gordon, Cade and
126
+ Carlini, Nicholas and
127
+ Taori, Rohan and
128
+ Dave, Achal and
129
+ Shankar, Vaishaal and
130
+ Namkoong, Hongseok and
131
+ Miller, John and
132
+ Hajishirzi, Hannaneh and
133
+ Farhadi, Ali and
134
+ Schmidt, Ludwig},
135
+ title = {OpenCLIP},
136
+ month = jul,
137
+ year = 2021,
138
+ note = {If you use this software, please cite it as below.},
139
+ publisher = {Zenodo},
140
+ version = {0.1},
141
+ doi = {10.5281/zenodo.5143773},
142
+ url = {https://doi.org/10.5281/zenodo.5143773}
143
+ }
144
+ ```
145
+
146
+ # How to Get Started with the Model
147
+
148
+ See https://github.com/mlfoundations/open_clip
config.json ADDED
@@ -0,0 +1,166 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_commit_hash": null,
3
+ "_name_or_path": "/home/marcussky/Git/CLIP-ViT-B-16-DataComp.XL-s13B-b90K",
4
+ "architectures": [
5
+ "CLIPModel"
6
+ ],
7
+ "initializer_factor": 1.0,
8
+ "logit_scale_init_value": 2.6592,
9
+ "model_type": "clip",
10
+ "projection_dim": 512,
11
+ "text_config": {
12
+ "_name_or_path": "",
13
+ "add_cross_attention": false,
14
+ "architectures": null,
15
+ "attention_dropout": 0.0,
16
+ "bad_words_ids": null,
17
+ "begin_suppress_tokens": null,
18
+ "bos_token_id": 0,
19
+ "chunk_size_feed_forward": 0,
20
+ "cross_attention_hidden_size": null,
21
+ "decoder_start_token_id": null,
22
+ "diversity_penalty": 0.0,
23
+ "do_sample": false,
24
+ "early_stopping": false,
25
+ "encoder_no_repeat_ngram_size": 0,
26
+ "eos_token_id": 2,
27
+ "exponential_decay_length_penalty": null,
28
+ "finetuning_task": null,
29
+ "forced_bos_token_id": null,
30
+ "forced_eos_token_id": null,
31
+ "hidden_act": "gelu",
32
+ "hidden_size": 512,
33
+ "id2label": {
34
+ "0": "LABEL_0",
35
+ "1": "LABEL_1"
36
+ },
37
+ "initializer_factor": 1.0,
38
+ "initializer_range": 0.02,
39
+ "intermediate_size": 2048,
40
+ "is_decoder": false,
41
+ "is_encoder_decoder": false,
42
+ "label2id": {
43
+ "LABEL_0": 0,
44
+ "LABEL_1": 1
45
+ },
46
+ "layer_norm_eps": 1e-05,
47
+ "length_penalty": 1.0,
48
+ "max_length": 20,
49
+ "max_position_embeddings": 77,
50
+ "min_length": 0,
51
+ "model_type": "clip_text_model",
52
+ "no_repeat_ngram_size": 0,
53
+ "num_attention_heads": 8,
54
+ "num_beam_groups": 1,
55
+ "num_beams": 1,
56
+ "num_hidden_layers": 12,
57
+ "num_return_sequences": 1,
58
+ "output_attentions": false,
59
+ "output_hidden_states": false,
60
+ "output_scores": false,
61
+ "pad_token_id": 1,
62
+ "prefix": null,
63
+ "problem_type": null,
64
+ "projection_dim": 512,
65
+ "pruned_heads": {},
66
+ "remove_invalid_values": false,
67
+ "repetition_penalty": 1.0,
68
+ "return_dict": true,
69
+ "return_dict_in_generate": false,
70
+ "sep_token_id": null,
71
+ "suppress_tokens": null,
72
+ "task_specific_params": null,
73
+ "temperature": 1.0,
74
+ "tf_legacy_loss": false,
75
+ "tie_encoder_decoder": false,
76
+ "tie_word_embeddings": true,
77
+ "tokenizer_class": null,
78
+ "top_k": 50,
79
+ "top_p": 1.0,
80
+ "torch_dtype": null,
81
+ "torchscript": false,
82
+ "transformers_version": "4.31.0.dev0",
83
+ "typical_p": 1.0,
84
+ "use_bfloat16": false,
85
+ "vocab_size": 49408
86
+ },
87
+ "torch_dtype": "bfloat16",
88
+ "transformers_version": null,
89
+ "vision_config": {
90
+ "_name_or_path": "",
91
+ "add_cross_attention": false,
92
+ "architectures": null,
93
+ "attention_dropout": 0.0,
94
+ "bad_words_ids": null,
95
+ "begin_suppress_tokens": null,
96
+ "bos_token_id": null,
97
+ "chunk_size_feed_forward": 0,
98
+ "cross_attention_hidden_size": null,
99
+ "decoder_start_token_id": null,
100
+ "diversity_penalty": 0.0,
101
+ "do_sample": false,
102
+ "early_stopping": false,
103
+ "encoder_no_repeat_ngram_size": 0,
104
+ "eos_token_id": null,
105
+ "exponential_decay_length_penalty": null,
106
+ "finetuning_task": null,
107
+ "forced_bos_token_id": null,
108
+ "forced_eos_token_id": null,
109
+ "hidden_act": "gelu",
110
+ "hidden_size": 768,
111
+ "id2label": {
112
+ "0": "LABEL_0",
113
+ "1": "LABEL_1"
114
+ },
115
+ "image_size": 224,
116
+ "initializer_factor": 1.0,
117
+ "initializer_range": 0.02,
118
+ "intermediate_size": 3072,
119
+ "is_decoder": false,
120
+ "is_encoder_decoder": false,
121
+ "label2id": {
122
+ "LABEL_0": 0,
123
+ "LABEL_1": 1
124
+ },
125
+ "layer_norm_eps": 1e-05,
126
+ "length_penalty": 1.0,
127
+ "max_length": 20,
128
+ "min_length": 0,
129
+ "model_type": "clip_vision_model",
130
+ "no_repeat_ngram_size": 0,
131
+ "num_attention_heads": 12,
132
+ "num_beam_groups": 1,
133
+ "num_beams": 1,
134
+ "num_channels": 3,
135
+ "num_hidden_layers": 12,
136
+ "num_return_sequences": 1,
137
+ "output_attentions": false,
138
+ "output_hidden_states": false,
139
+ "output_scores": false,
140
+ "pad_token_id": null,
141
+ "patch_size": 16,
142
+ "prefix": null,
143
+ "problem_type": null,
144
+ "projection_dim": 512,
145
+ "pruned_heads": {},
146
+ "remove_invalid_values": false,
147
+ "repetition_penalty": 1.0,
148
+ "return_dict": true,
149
+ "return_dict_in_generate": false,
150
+ "sep_token_id": null,
151
+ "suppress_tokens": null,
152
+ "task_specific_params": null,
153
+ "temperature": 1.0,
154
+ "tf_legacy_loss": false,
155
+ "tie_encoder_decoder": false,
156
+ "tie_word_embeddings": true,
157
+ "tokenizer_class": null,
158
+ "top_k": 50,
159
+ "top_p": 1.0,
160
+ "torch_dtype": null,
161
+ "torchscript": false,
162
+ "transformers_version": "4.31.0.dev0",
163
+ "typical_p": 1.0,
164
+ "use_bfloat16": false
165
+ }
166
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model.bf16.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f94f670953c716d93fdd20cdaa31f8bd10ccb2e207c2dcba2d6bdc263851b31a
3
+ size 299291434
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1304d0ff9a1d16629671afc5bc2ad29529729bfb8ba71d02b3f52f9fe14f3df3
3
+ size 598532764
open_clip_config.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "model_cfg": {
3
+ "embed_dim": 512,
4
+ "vision_cfg": {
5
+ "image_size": 224,
6
+ "layers": 12,
7
+ "width": 768,
8
+ "patch_size": 16
9
+ },
10
+ "text_cfg": {
11
+ "context_length": 77,
12
+ "vocab_size": 49408,
13
+ "width": 512,
14
+ "heads": 8,
15
+ "layers": 12
16
+ }
17
+ },
18
+ "preprocess_cfg": {
19
+ "mean": [
20
+ 0.48145466,
21
+ 0.4578275,
22
+ 0.40821073
23
+ ],
24
+ "std": [
25
+ 0.26862954,
26
+ 0.26130258,
27
+ 0.27577711
28
+ ]
29
+ }
30
+ }
open_clip_pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:80905176486d952914c1deb3b753b8e653ab54aa4ffb14208bc5007cf7643a16
3
+ size 598599013
preprocessor_config.json ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "crop_size": 224,
3
+ "do_center_crop": true,
4
+ "do_normalize": true,
5
+ "do_resize": true,
6
+ "feature_extractor_type": "CLIPFeatureExtractor",
7
+ "image_mean": [
8
+ 0.48145466,
9
+ 0.4578275,
10
+ 0.40821073
11
+ ],
12
+ "image_std": [
13
+ 0.26862954,
14
+ 0.26130258,
15
+ 0.27577711
16
+ ],
17
+ "resample": 3,
18
+ "size": 224
19
+ }
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8e3e22b0bf1cf0a31df3159c7e79bba4c57f5694c45ec02d1a985458402280ca
3
+ size 598602957
special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<|startoftext|>",
4
+ "lstrip": false,
5
+ "normalized": true,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "<|endoftext|>",
11
+ "lstrip": false,
12
+ "normalized": true,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "<|endoftext|>",
17
+ "unk_token": {
18
+ "content": "<|endoftext|>",
19
+ "lstrip": false,
20
+ "normalized": true,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "bos_token": {
4
+ "__type": "AddedToken",
5
+ "content": "<|startoftext|>",
6
+ "lstrip": false,
7
+ "normalized": true,
8
+ "rstrip": false,
9
+ "single_word": false
10
+ },
11
+ "do_lower_case": true,
12
+ "eos_token": {
13
+ "__type": "AddedToken",
14
+ "content": "<|endoftext|>",
15
+ "lstrip": false,
16
+ "normalized": true,
17
+ "rstrip": false,
18
+ "single_word": false
19
+ },
20
+ "errors": "replace",
21
+ "model_max_length": 77,
22
+ "name_or_path": "openai/clip-vit-large-patch14",
23
+ "pad_token": "<|endoftext|>",
24
+ "special_tokens_map_file": "./special_tokens_map.json",
25
+ "tokenizer_class": "CLIPTokenizer",
26
+ "unk_token": {
27
+ "__type": "AddedToken",
28
+ "content": "<|endoftext|>",
29
+ "lstrip": false,
30
+ "normalized": true,
31
+ "rstrip": false,
32
+ "single_word": false
33
+ }
34
+ }
vocab.json ADDED
The diff for this file is too large to render. See raw diff