{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fe2e16d9480>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe2e16d9510>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe2e16d95a0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe2e16d9630>", "_build": "<function ActorCriticPolicy._build at 0x7fe2e16d96c0>", "forward": "<function ActorCriticPolicy.forward at 0x7fe2e16d9750>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fe2e16d97e0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe2e16d9870>", "_predict": "<function ActorCriticPolicy._predict at 0x7fe2e16d9900>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe2e16d9990>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe2e16d9a20>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe2e16d9ab0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fe2e1660900>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1726163219120165989, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAObmaz1co2W6rhmBu/4nTTjQJTq6YDLRNwAAgD8AAAAAswwWvs+VBT5KKJ88/Ow1vtGZjb3vJII9AAAAAAAAAAATzEI+N7JCP5rktj1TJq6+tHC4PYqcL70AAAAAAAAAAABF37yB0kg/6A5GPWWdjr4UI2W8EkwCPAAAAAAAAAAAAIVvPjvCPT+b9+68Q2+OvrkDvz2oEZ69AAAAAAAAAAAamHi9UemcPmLhIz4yCYK+ZVRVPGhFPL0AAAAAAAAAAAC8JLwM470+UcQdPfSMeb4VyiA818WUvQAAAAAAAAAAmgWAuyk4Obrz+dc0B/RNMASl9LncARa0AACAPwAAgD/6dl4+pVeyP2se6D6DpNO+wA5+PrLUSzwAAAAAAAAAAMY3Cb57Aqq6gvKCM+ETHTAxX9o601y9swAAgD8AAIA/wEFMPqj3obzJjoY7M5zWuZtqD76Kha66AACAPwAAgD+z2cw9wz0oupwZN7RtSJiwbdEMO41NnTMAAAAAAACAP+bTez2P4is/BbXUPemyiL7c3PU8JDkcPQAAAAAAAAAAE1ZbPgQGFb2HlqY6vGFVuVb3gL6FIum5AACAPwAAgD9AFw8+RW52PjFZEb4+Ny6+ukWGvFpkAbwAAAAAAAAAAOYIBz0InMs9Lo39u/NkR75bJDU98+h+vQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHGW8uSOinKMAWyUTXgBjAF0lEdAmLeGA9V3lnV9lChoBkdAbi5wSamXPmgHTUQBaAhHQJi4kfYBeX11fZQoaAZHQG6MI8ZDRdBoB003AWgIR0CYuXbrC3w1dX2UKGgGR0Bwf83rD63zaAdNVwFoCEdAmLmSYTj//HV9lChoBkdAbWYOFQEZBWgHTYIBaAhHQJi59Dx9XtB1fZQoaAZHQG8qNz8xbjdoB005AWgIR0CYuigSeyzHdX2UKGgGR0BAoO0CzTnaaAdL3mgIR0CYuyvHLidbdX2UKGgGR0BrRKdSVGCqaAdNRAFoCEdAmLxf3i704HV9lChoBkdAcaaiBoVVP2gHTSgBaAhHQJjQs0fozN51fZQoaAZHQHDyw6U7jkxoB02bAWgIR0CY0ZdilSCOdX2UKGgGR0BxmqWOZLIxaAdNLQFoCEdAmNHMeKbay3V9lChoBkdAcsxv3rUsnWgHTVwBaAhHQJjS4NG3F1l1fZQoaAZHQHB/Zj2Bas9oB001AWgIR0CY0x/d69kCdX2UKGgGR0Buk6A8SwnqaAdNLQFoCEdAmNNrRF7UonV9lChoBkdAbv4RlpXZG2gHTVYBaAhHQJjTsxIre691fZQoaAZHQHIC1GPPszFoB01CAWgIR0CY1GiIcinpdX2UKGgGR0Bv8F9KEnLJaAdNNAFoCEdAmNflkhA4XHV9lChoBkdAcMR1rIo3JmgHTXgBaAhHQJjYH3JxNqR1fZQoaAZHQHDZweRxLkFoB005AWgIR0CY2FBNVR1pdX2UKGgGR0Bwx+47Rv3raAdNbAFoCEdAmNjH8sMAm3V9lChoBkdAb3dtShrWRWgHTVgBaAhHQJjY9HNHH3l1fZQoaAZHQHAo7F0gbIdoB01uAWgIR0CY2ZWmgrYodX2UKGgGR0BwQcRJ2+wlaAdNRwFoCEdAmNmg4KhL5HV9lChoBkdAcJQ6BAfMfWgHTTIBaAhHQJjZ0/wAlv91fZQoaAZHQHAHMQ/X5FhoB00oAWgIR0CY2qhDgIhRdX2UKGgGR0BxgMWqLjxTaAdNJAFoCEdAmN0kk0JnhHV9lChoBkdAcSleTFERa2gHTVgBaAhHQJjdUuoP07N1fZQoaAZHQHDfAbuMMqloB01iAWgIR0CY3XUkv9LpdX2UKGgGR0Bv+Esrd30PaAdNVgFoCEdAmN45FocrAnV9lChoBkdAcl+lRgqmTGgHTVcBaAhHQJjedJjDsMR1fZQoaAZHQHFOgiaAnUloB01MAWgIR0CY3qC/47A+dX2UKGgGR0Bw+z5AQg9vaAdNTwFoCEdAmN9lF2FFlXV9lChoBkdASXt+iJwbVGgHTRkBaAhHQJjgp1mrbQF1fZQoaAZHQHKXuxwAEMdoB00wAWgIR0CY4igzguRLdX2UKGgGR0Bvak/fO2RaaAdNQAFoCEdAmOJB1HOKO3V9lChoBkdAbihW7voeP2gHTSwBaAhHQJji5yxRl6J1fZQoaAZHQGy8dLHuJDVoB01RAWgIR0CY5IZowmE5dX2UKGgGR0BxL0Kmbb1zaAdNbQFoCEdAmOSFv60pmXV9lChoBkdAbaZCBwuM/GgHTVwBaAhHQJjkn0Bfa6B1fZQoaAZHQDfGD3/Pw/hoB0vsaAhHQJjk0C4jKPp1fZQoaAZHQGvDbpFCswNoB01JAWgIR0CY5TsNDtw8dX2UKGgGR0BsV8Ft8/liaAdNOgFoCEdAmOclqSHM2XV9lChoBkdAcRbjZtelbmgHTTEBaAhHQJjom3kPtlZ1fZQoaAZHQGsbB1klNURoB01JAWgIR0CY6Tg1m8NAdX2UKGgGR0BtUOo99tuUaAdNWAFoCEdAmOl0VSGahHV9lChoBkdAcCY56MR6GGgHTXkBaAhHQJjptw++ueV1fZQoaAZHQGzZ8vEjxCpoB01UAWgIR0CY6q33YcvNdX2UKGgGR0Bv9f4O+ZgHaAdNOgFoCEdAmOs5j+aScXV9lChoBkdAa2kNzbN8mmgHTUABaAhHQJjtLhfjS5R1fZQoaAZHQHGKxIFvAGloB01RAWgIR0CY7cuuieundX2UKGgGR0BxiL7TDwYtaAdNQwFoCEdAmO4quOjqOnV9lChoBkdAcRqBtk4FR2gHTSwBaAhHQJjvHWz4UN91fZQoaAZHQHFCXJHRTjxoB004AWgIR0CY769r433pdX2UKGgGR0BwuPokiUxEaAdNUAFoCEdAmPEfM4cWCXV9lChoBkdAcU8FId2gWmgHTWABaAhHQJjxi6/Zdv91fZQoaAZHQHAuFNDc/MZoB005AWgIR0CY82n9ehPCdX2UKGgGR0BxaiPvKEFoaAdNhAFoCEdAmPQy6tknTnV9lChoBkdAcl32YfGMoGgHTSUBaAhHQJkHh/nW8RN1fZQoaAZHQGzYnFo+OfdoB000AWgIR0CZB9OB19v1dX2UKGgGR0BwFbQu27WeaAdNZwFoCEdAmQkW3z+WGHV9lChoBkdAcDwU7jkuH2gHTT8BaAhHQJkKkwj+rEN1fZQoaAZHQHB38mrsByVoB02SAWgIR0CZC/9JSR8udX2UKGgGR0BxNtaePJaJaAdNdAFoCEdAmQwM4xUNrnV9lChoBkdAbvY3hGYrrmgHTTIBaAhHQJkMRn+Q2dd1fZQoaAZHQHCmAskIHC5oB00lAWgIR0CZDFFb3XZodX2UKGgGR0Bs252KVII4aAdNQAFoCEdAmQ1u1OTJQ3V9lChoBkdAcJ2xNIsiCGgHTSkBaAhHQJkNvzQNTcZ1fZQoaAZHQGAU3Xyy2QZoB03oA2gIR0CZDdfb9If9dX2UKGgGR0BxUksGxD9gaAdNTwFoCEdAmQ55kXk5qHV9lChoBkdAcUw/Ot4iYGgHTTABaAhHQJkO4T37DVJ1fZQoaAZHQHAyX1rZampoB01RAWgIR0CZEC32EkB0dX2UKGgGR0Bv4lRWLgn/aAdNQQFoCEdAmRGDUqhDgXV9lChoBkdAbvGUIsyzomgHTSYBaAhHQJkR2IO6NER1fZQoaAZHQGyYW7e2uxNoB01aAWgIR0CZEdd2xIJ7dX2UKGgGR0BxELdBSk0raAdNTwFoCEdAmRLAkLQXynV9lChoBkdAcYhoVEd/8WgHTSsBaAhHQJkS7dAPd2x1fZQoaAZHQHHRGmUGFBZoB00qAWgIR0CZE/2Q4jrzdX2UKGgGR0BxJxxLkCFLaAdNEwFoCEdAmRSfm5lOGnV9lChoBkdAcO6SKFZgX2gHTTMBaAhHQJkVU8IRh+h1fZQoaAZHQHIg9o371qZoB00cAWgIR0CZFjyk9ECvdX2UKGgGR0BxTPJMg2ZRaAdNXwFoCEdAmRbdsJpnH3V9lChoBkdAbhN6qsEJSmgHTT8BaAhHQJkXaFajesR1fZQoaAZHQHElJEpiI+JoB01rAWgIR0CZGFxpL26DdX2UKGgGR0BxD/kBCD28aAdNbgFoCEdAmRmsBZIQOHV9lChoBkdAbEf9srNGE2gHTSYBaAhHQJkagmOU+s51fZQoaAZHQHJ8aZUkv9NoB00UAWgIR0CZG5xY7q6fdX2UKGgGR0BwiBUYKpkxaAdNQwFoCEdAmRvqM72crnV9lChoBkdAbcn8QZn+Q2gHTTQBaAhHQJkcl0nw5Np1fZQoaAZHQHBrlL39JjFoB000AWgIR0CZHlk4WDYidX2UKGgGR0BvvffGdZq3aAdNIwFoCEdAmR53qiXY2HV9lChoBkdAcCXR+z+m32gHTT8BaAhHQJkgduAI6bR1fZQoaAZHQHCvtmQKa5RoB03eAWgIR0CZIiFMqSX/dX2UKGgGR0BwXiRigCfZaAdNUAFoCEdAmSPm6K+BYnV9lChoBkdAcJGRRuTA32gHTWwBaAhHQJkkTTkQwsZ1fZQoaAZHQHE85+MIeHVoB003AWgIR0CZJSR6Ww/xdX2UKGgGR0BxvACW/rSmaAdNQAFoCEdAmSe2qkuYhXV9lChoBkdAci7pH7P6bmgHTR0BaAhHQJko2uKXOW11fZQoaAZHQHDeYuK4x1xoB02kAWgIR0CZKWzTF2mpdX2UKGgGR0BvuggcLjPwaAdNTAFoCEdAmSm4BJZntnV9lChoBkdAcGEos7MgU2gHTUsBaAhHQJkrkBfa6Bl1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.4.0+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |