zqhuang commited on
Commit
4ff16d7
·
verified ·
1 Parent(s): 1e283a1

Upload UltravoxPipeline

Browse files
README.md ADDED
@@ -0,0 +1,199 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ tags: []
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+ This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
config.json ADDED
@@ -0,0 +1,196 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/Users/zhuang/repos/ultravox/artifacts/model-zhuang.2024-08-21-ultravox.medium-1j:v5",
3
+ "architectures": [
4
+ "UltravoxModel"
5
+ ],
6
+ "audio_config": {
7
+ "_name_or_path": "openai/whisper-medium",
8
+ "activation_dropout": 0.0,
9
+ "activation_function": "gelu",
10
+ "apply_spec_augment": false,
11
+ "architectures": [
12
+ "WhisperForConditionalGeneration"
13
+ ],
14
+ "attention_dropout": 0.0,
15
+ "begin_suppress_tokens": [
16
+ 220,
17
+ 50257
18
+ ],
19
+ "bos_token_id": 50257,
20
+ "d_model": 1024,
21
+ "decoder_attention_heads": 16,
22
+ "decoder_ffn_dim": 4096,
23
+ "decoder_layerdrop": 0.0,
24
+ "decoder_layers": 24,
25
+ "decoder_start_token_id": 50258,
26
+ "dropout": 0.0,
27
+ "encoder_attention_heads": 16,
28
+ "encoder_ffn_dim": 4096,
29
+ "encoder_layerdrop": 0.0,
30
+ "encoder_layers": 24,
31
+ "eos_token_id": 50257,
32
+ "forced_decoder_ids": [
33
+ [
34
+ 1,
35
+ 50259
36
+ ],
37
+ [
38
+ 2,
39
+ 50359
40
+ ],
41
+ [
42
+ 3,
43
+ 50363
44
+ ]
45
+ ],
46
+ "init_std": 0.02,
47
+ "is_encoder_decoder": true,
48
+ "max_length": 448,
49
+ "max_source_positions": 1500,
50
+ "max_target_positions": 448,
51
+ "median_filter_width": 7,
52
+ "model_type": "whisper",
53
+ "num_hidden_layers": 24,
54
+ "num_mel_bins": 80,
55
+ "pad_token_id": 50257,
56
+ "scale_embedding": false,
57
+ "suppress_tokens": [
58
+ 1,
59
+ 2,
60
+ 7,
61
+ 8,
62
+ 9,
63
+ 10,
64
+ 14,
65
+ 25,
66
+ 26,
67
+ 27,
68
+ 28,
69
+ 29,
70
+ 31,
71
+ 58,
72
+ 59,
73
+ 60,
74
+ 61,
75
+ 62,
76
+ 63,
77
+ 90,
78
+ 91,
79
+ 92,
80
+ 93,
81
+ 359,
82
+ 503,
83
+ 522,
84
+ 542,
85
+ 873,
86
+ 893,
87
+ 902,
88
+ 918,
89
+ 922,
90
+ 931,
91
+ 1350,
92
+ 1853,
93
+ 1982,
94
+ 2460,
95
+ 2627,
96
+ 3246,
97
+ 3253,
98
+ 3268,
99
+ 3536,
100
+ 3846,
101
+ 3961,
102
+ 4183,
103
+ 4667,
104
+ 6585,
105
+ 6647,
106
+ 7273,
107
+ 9061,
108
+ 9383,
109
+ 10428,
110
+ 10929,
111
+ 11938,
112
+ 12033,
113
+ 12331,
114
+ 12562,
115
+ 13793,
116
+ 14157,
117
+ 14635,
118
+ 15265,
119
+ 15618,
120
+ 16553,
121
+ 16604,
122
+ 18362,
123
+ 18956,
124
+ 20075,
125
+ 21675,
126
+ 22520,
127
+ 26130,
128
+ 26161,
129
+ 26435,
130
+ 28279,
131
+ 29464,
132
+ 31650,
133
+ 32302,
134
+ 32470,
135
+ 36865,
136
+ 42863,
137
+ 47425,
138
+ 49870,
139
+ 50254,
140
+ 50258,
141
+ 50358,
142
+ 50359,
143
+ 50360,
144
+ 50361,
145
+ 50362
146
+ ],
147
+ "torch_dtype": "float32",
148
+ "use_cache": true,
149
+ "vocab_size": 51865
150
+ },
151
+ "audio_model_id": "openai/whisper-medium",
152
+ "audio_token_index": 32000,
153
+ "auto_map": {
154
+ "AutoConfig": "ultravox_config.UltravoxConfig",
155
+ "AutoModel": "ultravox_model.UltravoxModel"
156
+ },
157
+ "custom_pipelines": {
158
+ "ultravox-pipeline": {
159
+ "impl": "ultravox_pipeline.UltravoxPipeline",
160
+ "pt": [
161
+ "AutoModel"
162
+ ],
163
+ "tf": [],
164
+ "type": "multimodal"
165
+ }
166
+ },
167
+ "hidden_size": 4096,
168
+ "ignore_index": -100,
169
+ "initializer_range": 0.02,
170
+ "model_type": "ultravox",
171
+ "norm_init": 0.4,
172
+ "projector_act": "swiglu",
173
+ "stack_factor": 8,
174
+ "text_config": {
175
+ "_name_or_path": "mistralai/Mistral-Nemo-Instruct-2407",
176
+ "architectures": [
177
+ "MistralForCausalLM"
178
+ ],
179
+ "head_dim": 128,
180
+ "hidden_size": 5120,
181
+ "intermediate_size": 14336,
182
+ "max_position_embeddings": 1024000,
183
+ "model_type": "mistral",
184
+ "num_hidden_layers": 40,
185
+ "num_key_value_heads": 8,
186
+ "rms_norm_eps": 1e-05,
187
+ "rope_theta": 1000000.0,
188
+ "sliding_window": null,
189
+ "torch_dtype": "bfloat16",
190
+ "vocab_size": 131072
191
+ },
192
+ "text_model_id": null,
193
+ "torch_dtype": "bfloat16",
194
+ "transformers_version": "4.44.0",
195
+ "vocab_size": 131072
196
+ }
generation_config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 1,
4
+ "eos_token_id": 2,
5
+ "pad_token_id": 2,
6
+ "transformers_version": "4.44.0"
7
+ }
model-00001-of-00005.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8d5fd3d46b9695c013286bfd5bec2d36c174880da4ca081806885cc717b9e2a5
3
+ size 4953630856
model-00002-of-00005.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:51d105843958b7619bd1a61b82342b5ae2fd98c52a30e955b3871578e3358ed2
3
+ size 4907530640
model-00003-of-00005.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:85f7e6b53b07ce006b8d86363d3ae4ac2569787ec483b206542faed1a758dae8
3
+ size 4907530672
model-00004-of-00005.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:70ca37fe132206dc600cc9388ae53318cb4d63b3d3f698cfea99f8a90555dd35
3
+ size 4907530672
model-00005-of-00005.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:99266a783cd09c5d8832a88797f30ab1a5d3c8a29ecade15662bbc4d6a153f0d
3
+ size 4907497168
model.safetensors.index.json ADDED
@@ -0,0 +1,374 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 24583671808
4
+ },
5
+ "weight_map": {
6
+ "language_model.lm_head.weight": "model-00005-of-00005.safetensors",
7
+ "language_model.model.embed_tokens.weight": "model-00001-of-00005.safetensors",
8
+ "language_model.model.layers.0.input_layernorm.weight": "model-00001-of-00005.safetensors",
9
+ "language_model.model.layers.0.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
10
+ "language_model.model.layers.0.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
11
+ "language_model.model.layers.0.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
12
+ "language_model.model.layers.0.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
13
+ "language_model.model.layers.0.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
14
+ "language_model.model.layers.0.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
15
+ "language_model.model.layers.0.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
16
+ "language_model.model.layers.0.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
17
+ "language_model.model.layers.1.input_layernorm.weight": "model-00001-of-00005.safetensors",
18
+ "language_model.model.layers.1.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
19
+ "language_model.model.layers.1.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
20
+ "language_model.model.layers.1.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
21
+ "language_model.model.layers.1.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
22
+ "language_model.model.layers.1.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
23
+ "language_model.model.layers.1.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
24
+ "language_model.model.layers.1.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
25
+ "language_model.model.layers.1.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
26
+ "language_model.model.layers.10.input_layernorm.weight": "model-00002-of-00005.safetensors",
27
+ "language_model.model.layers.10.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
28
+ "language_model.model.layers.10.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
29
+ "language_model.model.layers.10.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
30
+ "language_model.model.layers.10.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
31
+ "language_model.model.layers.10.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
32
+ "language_model.model.layers.10.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
33
+ "language_model.model.layers.10.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
34
+ "language_model.model.layers.10.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
35
+ "language_model.model.layers.11.input_layernorm.weight": "model-00002-of-00005.safetensors",
36
+ "language_model.model.layers.11.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
37
+ "language_model.model.layers.11.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
38
+ "language_model.model.layers.11.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
39
+ "language_model.model.layers.11.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
40
+ "language_model.model.layers.11.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
41
+ "language_model.model.layers.11.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
42
+ "language_model.model.layers.11.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
43
+ "language_model.model.layers.11.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
44
+ "language_model.model.layers.12.input_layernorm.weight": "model-00002-of-00005.safetensors",
45
+ "language_model.model.layers.12.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
46
+ "language_model.model.layers.12.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
47
+ "language_model.model.layers.12.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
48
+ "language_model.model.layers.12.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
49
+ "language_model.model.layers.12.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
50
+ "language_model.model.layers.12.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
51
+ "language_model.model.layers.12.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
52
+ "language_model.model.layers.12.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
53
+ "language_model.model.layers.13.input_layernorm.weight": "model-00002-of-00005.safetensors",
54
+ "language_model.model.layers.13.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
55
+ "language_model.model.layers.13.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
56
+ "language_model.model.layers.13.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
57
+ "language_model.model.layers.13.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
58
+ "language_model.model.layers.13.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
59
+ "language_model.model.layers.13.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
60
+ "language_model.model.layers.13.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
61
+ "language_model.model.layers.13.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
62
+ "language_model.model.layers.14.input_layernorm.weight": "model-00002-of-00005.safetensors",
63
+ "language_model.model.layers.14.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
64
+ "language_model.model.layers.14.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
65
+ "language_model.model.layers.14.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
66
+ "language_model.model.layers.14.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
67
+ "language_model.model.layers.14.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
68
+ "language_model.model.layers.14.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
69
+ "language_model.model.layers.14.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
70
+ "language_model.model.layers.14.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
71
+ "language_model.model.layers.15.input_layernorm.weight": "model-00003-of-00005.safetensors",
72
+ "language_model.model.layers.15.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
73
+ "language_model.model.layers.15.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
74
+ "language_model.model.layers.15.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
75
+ "language_model.model.layers.15.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
76
+ "language_model.model.layers.15.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
77
+ "language_model.model.layers.15.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
78
+ "language_model.model.layers.15.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
79
+ "language_model.model.layers.15.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
80
+ "language_model.model.layers.16.input_layernorm.weight": "model-00003-of-00005.safetensors",
81
+ "language_model.model.layers.16.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
82
+ "language_model.model.layers.16.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
83
+ "language_model.model.layers.16.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
84
+ "language_model.model.layers.16.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
85
+ "language_model.model.layers.16.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
86
+ "language_model.model.layers.16.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
87
+ "language_model.model.layers.16.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
88
+ "language_model.model.layers.16.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
89
+ "language_model.model.layers.17.input_layernorm.weight": "model-00003-of-00005.safetensors",
90
+ "language_model.model.layers.17.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
91
+ "language_model.model.layers.17.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
92
+ "language_model.model.layers.17.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
93
+ "language_model.model.layers.17.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
94
+ "language_model.model.layers.17.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
95
+ "language_model.model.layers.17.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
96
+ "language_model.model.layers.17.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
97
+ "language_model.model.layers.17.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
98
+ "language_model.model.layers.18.input_layernorm.weight": "model-00003-of-00005.safetensors",
99
+ "language_model.model.layers.18.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
100
+ "language_model.model.layers.18.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
101
+ "language_model.model.layers.18.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
102
+ "language_model.model.layers.18.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
103
+ "language_model.model.layers.18.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
104
+ "language_model.model.layers.18.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
105
+ "language_model.model.layers.18.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
106
+ "language_model.model.layers.18.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
107
+ "language_model.model.layers.19.input_layernorm.weight": "model-00003-of-00005.safetensors",
108
+ "language_model.model.layers.19.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
109
+ "language_model.model.layers.19.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
110
+ "language_model.model.layers.19.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
111
+ "language_model.model.layers.19.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
112
+ "language_model.model.layers.19.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
113
+ "language_model.model.layers.19.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
114
+ "language_model.model.layers.19.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
115
+ "language_model.model.layers.19.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
116
+ "language_model.model.layers.2.input_layernorm.weight": "model-00001-of-00005.safetensors",
117
+ "language_model.model.layers.2.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
118
+ "language_model.model.layers.2.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
119
+ "language_model.model.layers.2.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
120
+ "language_model.model.layers.2.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
121
+ "language_model.model.layers.2.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
122
+ "language_model.model.layers.2.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
123
+ "language_model.model.layers.2.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
124
+ "language_model.model.layers.2.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
125
+ "language_model.model.layers.20.input_layernorm.weight": "model-00003-of-00005.safetensors",
126
+ "language_model.model.layers.20.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
127
+ "language_model.model.layers.20.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
128
+ "language_model.model.layers.20.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
129
+ "language_model.model.layers.20.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
130
+ "language_model.model.layers.20.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
131
+ "language_model.model.layers.20.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
132
+ "language_model.model.layers.20.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
133
+ "language_model.model.layers.20.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
134
+ "language_model.model.layers.21.input_layernorm.weight": "model-00003-of-00005.safetensors",
135
+ "language_model.model.layers.21.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
136
+ "language_model.model.layers.21.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
137
+ "language_model.model.layers.21.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
138
+ "language_model.model.layers.21.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
139
+ "language_model.model.layers.21.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
140
+ "language_model.model.layers.21.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
141
+ "language_model.model.layers.21.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
142
+ "language_model.model.layers.21.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
143
+ "language_model.model.layers.22.input_layernorm.weight": "model-00003-of-00005.safetensors",
144
+ "language_model.model.layers.22.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
145
+ "language_model.model.layers.22.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
146
+ "language_model.model.layers.22.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
147
+ "language_model.model.layers.22.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
148
+ "language_model.model.layers.22.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
149
+ "language_model.model.layers.22.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
150
+ "language_model.model.layers.22.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
151
+ "language_model.model.layers.22.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
152
+ "language_model.model.layers.23.input_layernorm.weight": "model-00003-of-00005.safetensors",
153
+ "language_model.model.layers.23.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
154
+ "language_model.model.layers.23.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
155
+ "language_model.model.layers.23.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
156
+ "language_model.model.layers.23.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
157
+ "language_model.model.layers.23.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
158
+ "language_model.model.layers.23.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
159
+ "language_model.model.layers.23.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
160
+ "language_model.model.layers.23.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
161
+ "language_model.model.layers.24.input_layernorm.weight": "model-00004-of-00005.safetensors",
162
+ "language_model.model.layers.24.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
163
+ "language_model.model.layers.24.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
164
+ "language_model.model.layers.24.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
165
+ "language_model.model.layers.24.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
166
+ "language_model.model.layers.24.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
167
+ "language_model.model.layers.24.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
168
+ "language_model.model.layers.24.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
169
+ "language_model.model.layers.24.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
170
+ "language_model.model.layers.25.input_layernorm.weight": "model-00004-of-00005.safetensors",
171
+ "language_model.model.layers.25.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
172
+ "language_model.model.layers.25.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
173
+ "language_model.model.layers.25.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
174
+ "language_model.model.layers.25.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
175
+ "language_model.model.layers.25.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
176
+ "language_model.model.layers.25.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
177
+ "language_model.model.layers.25.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
178
+ "language_model.model.layers.25.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
179
+ "language_model.model.layers.26.input_layernorm.weight": "model-00004-of-00005.safetensors",
180
+ "language_model.model.layers.26.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
181
+ "language_model.model.layers.26.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
182
+ "language_model.model.layers.26.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
183
+ "language_model.model.layers.26.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
184
+ "language_model.model.layers.26.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
185
+ "language_model.model.layers.26.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
186
+ "language_model.model.layers.26.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
187
+ "language_model.model.layers.26.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
188
+ "language_model.model.layers.27.input_layernorm.weight": "model-00004-of-00005.safetensors",
189
+ "language_model.model.layers.27.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
190
+ "language_model.model.layers.27.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
191
+ "language_model.model.layers.27.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
192
+ "language_model.model.layers.27.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
193
+ "language_model.model.layers.27.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
194
+ "language_model.model.layers.27.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
195
+ "language_model.model.layers.27.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
196
+ "language_model.model.layers.27.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
197
+ "language_model.model.layers.28.input_layernorm.weight": "model-00004-of-00005.safetensors",
198
+ "language_model.model.layers.28.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
199
+ "language_model.model.layers.28.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
200
+ "language_model.model.layers.28.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
201
+ "language_model.model.layers.28.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
202
+ "language_model.model.layers.28.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
203
+ "language_model.model.layers.28.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
204
+ "language_model.model.layers.28.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
205
+ "language_model.model.layers.28.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
206
+ "language_model.model.layers.29.input_layernorm.weight": "model-00004-of-00005.safetensors",
207
+ "language_model.model.layers.29.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
208
+ "language_model.model.layers.29.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
209
+ "language_model.model.layers.29.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
210
+ "language_model.model.layers.29.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
211
+ "language_model.model.layers.29.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
212
+ "language_model.model.layers.29.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
213
+ "language_model.model.layers.29.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
214
+ "language_model.model.layers.29.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
215
+ "language_model.model.layers.3.input_layernorm.weight": "model-00001-of-00005.safetensors",
216
+ "language_model.model.layers.3.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
217
+ "language_model.model.layers.3.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
218
+ "language_model.model.layers.3.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
219
+ "language_model.model.layers.3.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
220
+ "language_model.model.layers.3.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
221
+ "language_model.model.layers.3.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
222
+ "language_model.model.layers.3.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
223
+ "language_model.model.layers.3.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
224
+ "language_model.model.layers.30.input_layernorm.weight": "model-00004-of-00005.safetensors",
225
+ "language_model.model.layers.30.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
226
+ "language_model.model.layers.30.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
227
+ "language_model.model.layers.30.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
228
+ "language_model.model.layers.30.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
229
+ "language_model.model.layers.30.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
230
+ "language_model.model.layers.30.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
231
+ "language_model.model.layers.30.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
232
+ "language_model.model.layers.30.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
233
+ "language_model.model.layers.31.input_layernorm.weight": "model-00004-of-00005.safetensors",
234
+ "language_model.model.layers.31.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
235
+ "language_model.model.layers.31.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
236
+ "language_model.model.layers.31.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
237
+ "language_model.model.layers.31.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
238
+ "language_model.model.layers.31.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
239
+ "language_model.model.layers.31.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
240
+ "language_model.model.layers.31.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
241
+ "language_model.model.layers.31.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
242
+ "language_model.model.layers.32.input_layernorm.weight": "model-00004-of-00005.safetensors",
243
+ "language_model.model.layers.32.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
244
+ "language_model.model.layers.32.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
245
+ "language_model.model.layers.32.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
246
+ "language_model.model.layers.32.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
247
+ "language_model.model.layers.32.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
248
+ "language_model.model.layers.32.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
249
+ "language_model.model.layers.32.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
250
+ "language_model.model.layers.32.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
251
+ "language_model.model.layers.33.input_layernorm.weight": "model-00005-of-00005.safetensors",
252
+ "language_model.model.layers.33.mlp.down_proj.weight": "model-00005-of-00005.safetensors",
253
+ "language_model.model.layers.33.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
254
+ "language_model.model.layers.33.mlp.up_proj.weight": "model-00005-of-00005.safetensors",
255
+ "language_model.model.layers.33.post_attention_layernorm.weight": "model-00005-of-00005.safetensors",
256
+ "language_model.model.layers.33.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
257
+ "language_model.model.layers.33.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
258
+ "language_model.model.layers.33.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
259
+ "language_model.model.layers.33.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
260
+ "language_model.model.layers.34.input_layernorm.weight": "model-00005-of-00005.safetensors",
261
+ "language_model.model.layers.34.mlp.down_proj.weight": "model-00005-of-00005.safetensors",
262
+ "language_model.model.layers.34.mlp.gate_proj.weight": "model-00005-of-00005.safetensors",
263
+ "language_model.model.layers.34.mlp.up_proj.weight": "model-00005-of-00005.safetensors",
264
+ "language_model.model.layers.34.post_attention_layernorm.weight": "model-00005-of-00005.safetensors",
265
+ "language_model.model.layers.34.self_attn.k_proj.weight": "model-00005-of-00005.safetensors",
266
+ "language_model.model.layers.34.self_attn.o_proj.weight": "model-00005-of-00005.safetensors",
267
+ "language_model.model.layers.34.self_attn.q_proj.weight": "model-00005-of-00005.safetensors",
268
+ "language_model.model.layers.34.self_attn.v_proj.weight": "model-00005-of-00005.safetensors",
269
+ "language_model.model.layers.35.input_layernorm.weight": "model-00005-of-00005.safetensors",
270
+ "language_model.model.layers.35.mlp.down_proj.weight": "model-00005-of-00005.safetensors",
271
+ "language_model.model.layers.35.mlp.gate_proj.weight": "model-00005-of-00005.safetensors",
272
+ "language_model.model.layers.35.mlp.up_proj.weight": "model-00005-of-00005.safetensors",
273
+ "language_model.model.layers.35.post_attention_layernorm.weight": "model-00005-of-00005.safetensors",
274
+ "language_model.model.layers.35.self_attn.k_proj.weight": "model-00005-of-00005.safetensors",
275
+ "language_model.model.layers.35.self_attn.o_proj.weight": "model-00005-of-00005.safetensors",
276
+ "language_model.model.layers.35.self_attn.q_proj.weight": "model-00005-of-00005.safetensors",
277
+ "language_model.model.layers.35.self_attn.v_proj.weight": "model-00005-of-00005.safetensors",
278
+ "language_model.model.layers.36.input_layernorm.weight": "model-00005-of-00005.safetensors",
279
+ "language_model.model.layers.36.mlp.down_proj.weight": "model-00005-of-00005.safetensors",
280
+ "language_model.model.layers.36.mlp.gate_proj.weight": "model-00005-of-00005.safetensors",
281
+ "language_model.model.layers.36.mlp.up_proj.weight": "model-00005-of-00005.safetensors",
282
+ "language_model.model.layers.36.post_attention_layernorm.weight": "model-00005-of-00005.safetensors",
283
+ "language_model.model.layers.36.self_attn.k_proj.weight": "model-00005-of-00005.safetensors",
284
+ "language_model.model.layers.36.self_attn.o_proj.weight": "model-00005-of-00005.safetensors",
285
+ "language_model.model.layers.36.self_attn.q_proj.weight": "model-00005-of-00005.safetensors",
286
+ "language_model.model.layers.36.self_attn.v_proj.weight": "model-00005-of-00005.safetensors",
287
+ "language_model.model.layers.37.input_layernorm.weight": "model-00005-of-00005.safetensors",
288
+ "language_model.model.layers.37.mlp.down_proj.weight": "model-00005-of-00005.safetensors",
289
+ "language_model.model.layers.37.mlp.gate_proj.weight": "model-00005-of-00005.safetensors",
290
+ "language_model.model.layers.37.mlp.up_proj.weight": "model-00005-of-00005.safetensors",
291
+ "language_model.model.layers.37.post_attention_layernorm.weight": "model-00005-of-00005.safetensors",
292
+ "language_model.model.layers.37.self_attn.k_proj.weight": "model-00005-of-00005.safetensors",
293
+ "language_model.model.layers.37.self_attn.o_proj.weight": "model-00005-of-00005.safetensors",
294
+ "language_model.model.layers.37.self_attn.q_proj.weight": "model-00005-of-00005.safetensors",
295
+ "language_model.model.layers.37.self_attn.v_proj.weight": "model-00005-of-00005.safetensors",
296
+ "language_model.model.layers.38.input_layernorm.weight": "model-00005-of-00005.safetensors",
297
+ "language_model.model.layers.38.mlp.down_proj.weight": "model-00005-of-00005.safetensors",
298
+ "language_model.model.layers.38.mlp.gate_proj.weight": "model-00005-of-00005.safetensors",
299
+ "language_model.model.layers.38.mlp.up_proj.weight": "model-00005-of-00005.safetensors",
300
+ "language_model.model.layers.38.post_attention_layernorm.weight": "model-00005-of-00005.safetensors",
301
+ "language_model.model.layers.38.self_attn.k_proj.weight": "model-00005-of-00005.safetensors",
302
+ "language_model.model.layers.38.self_attn.o_proj.weight": "model-00005-of-00005.safetensors",
303
+ "language_model.model.layers.38.self_attn.q_proj.weight": "model-00005-of-00005.safetensors",
304
+ "language_model.model.layers.38.self_attn.v_proj.weight": "model-00005-of-00005.safetensors",
305
+ "language_model.model.layers.39.input_layernorm.weight": "model-00005-of-00005.safetensors",
306
+ "language_model.model.layers.39.mlp.down_proj.weight": "model-00005-of-00005.safetensors",
307
+ "language_model.model.layers.39.mlp.gate_proj.weight": "model-00005-of-00005.safetensors",
308
+ "language_model.model.layers.39.mlp.up_proj.weight": "model-00005-of-00005.safetensors",
309
+ "language_model.model.layers.39.post_attention_layernorm.weight": "model-00005-of-00005.safetensors",
310
+ "language_model.model.layers.39.self_attn.k_proj.weight": "model-00005-of-00005.safetensors",
311
+ "language_model.model.layers.39.self_attn.o_proj.weight": "model-00005-of-00005.safetensors",
312
+ "language_model.model.layers.39.self_attn.q_proj.weight": "model-00005-of-00005.safetensors",
313
+ "language_model.model.layers.39.self_attn.v_proj.weight": "model-00005-of-00005.safetensors",
314
+ "language_model.model.layers.4.input_layernorm.weight": "model-00001-of-00005.safetensors",
315
+ "language_model.model.layers.4.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
316
+ "language_model.model.layers.4.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
317
+ "language_model.model.layers.4.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
318
+ "language_model.model.layers.4.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
319
+ "language_model.model.layers.4.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
320
+ "language_model.model.layers.4.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
321
+ "language_model.model.layers.4.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
322
+ "language_model.model.layers.4.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
323
+ "language_model.model.layers.5.input_layernorm.weight": "model-00001-of-00005.safetensors",
324
+ "language_model.model.layers.5.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
325
+ "language_model.model.layers.5.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
326
+ "language_model.model.layers.5.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
327
+ "language_model.model.layers.5.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
328
+ "language_model.model.layers.5.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
329
+ "language_model.model.layers.5.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
330
+ "language_model.model.layers.5.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
331
+ "language_model.model.layers.5.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
332
+ "language_model.model.layers.6.input_layernorm.weight": "model-00002-of-00005.safetensors",
333
+ "language_model.model.layers.6.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
334
+ "language_model.model.layers.6.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
335
+ "language_model.model.layers.6.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
336
+ "language_model.model.layers.6.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
337
+ "language_model.model.layers.6.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
338
+ "language_model.model.layers.6.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
339
+ "language_model.model.layers.6.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
340
+ "language_model.model.layers.6.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
341
+ "language_model.model.layers.7.input_layernorm.weight": "model-00002-of-00005.safetensors",
342
+ "language_model.model.layers.7.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
343
+ "language_model.model.layers.7.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
344
+ "language_model.model.layers.7.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
345
+ "language_model.model.layers.7.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
346
+ "language_model.model.layers.7.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
347
+ "language_model.model.layers.7.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
348
+ "language_model.model.layers.7.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
349
+ "language_model.model.layers.7.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
350
+ "language_model.model.layers.8.input_layernorm.weight": "model-00002-of-00005.safetensors",
351
+ "language_model.model.layers.8.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
352
+ "language_model.model.layers.8.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
353
+ "language_model.model.layers.8.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
354
+ "language_model.model.layers.8.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
355
+ "language_model.model.layers.8.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
356
+ "language_model.model.layers.8.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
357
+ "language_model.model.layers.8.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
358
+ "language_model.model.layers.8.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
359
+ "language_model.model.layers.9.input_layernorm.weight": "model-00002-of-00005.safetensors",
360
+ "language_model.model.layers.9.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
361
+ "language_model.model.layers.9.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
362
+ "language_model.model.layers.9.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
363
+ "language_model.model.layers.9.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
364
+ "language_model.model.layers.9.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
365
+ "language_model.model.layers.9.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
366
+ "language_model.model.layers.9.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
367
+ "language_model.model.layers.9.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
368
+ "language_model.model.norm.weight": "model-00005-of-00005.safetensors",
369
+ "multi_modal_projector.linear_1.weight": "model-00001-of-00005.safetensors",
370
+ "multi_modal_projector.linear_2.weight": "model-00001-of-00005.safetensors",
371
+ "multi_modal_projector.ln_post.weight": "model-00001-of-00005.safetensors",
372
+ "multi_modal_projector.ln_pre.weight": "model-00001-of-00005.safetensors"
373
+ }
374
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "</s>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
The diff for this file is too large to render. See raw diff
 
ultravox_config.py ADDED
@@ -0,0 +1,157 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import dataclasses
2
+ from enum import Enum
3
+ from typing import Any, Dict, List, Optional
4
+
5
+ import transformers
6
+
7
+
8
+ @dataclasses.dataclass
9
+ class LoraConfigSimplified:
10
+ """
11
+ Low Rank Approximation (LoRA) configuration.
12
+
13
+ Used for language and audio models separately.
14
+ """
15
+
16
+ # The rank of the approximation
17
+ r: int = 0
18
+ lora_alpha: float = 8
19
+ target_modules: Optional[List[str]] = dataclasses.field(
20
+ default_factory=lambda: ["k_proj", "q_proj", "linear_k", "linear_q"]
21
+ )
22
+
23
+
24
+ class LossFunction(str, Enum):
25
+ CrossEntropy = "ce"
26
+ KL_Divergence = "kl"
27
+
28
+
29
+ @dataclasses.dataclass
30
+ class LossConfig:
31
+ loss_function: LossFunction = LossFunction.KL_Divergence
32
+ kl_temperature: float = 2.0
33
+
34
+ @property
35
+ def requires_alt_fields(self):
36
+ return self.loss_function == LossFunction.KL_Divergence
37
+
38
+
39
+ class UltravoxConfig(transformers.PretrainedConfig):
40
+ r"""
41
+ This is the configuration class to store the configuration of a [`UltravoxForConditionalGeneration`]. It is used to instantiate an
42
+ Ultravox model according to the specified arguments, defining the model architecture.
43
+
44
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
45
+ documentation from [`PretrainedConfig`] for more information.
46
+
47
+ Args:
48
+ audio_config (`Wav2Vec2Config`, *optional*):
49
+ Custom audio config or dict
50
+ text_config (`Union[AutoConfig, dict]`, *optional*):
51
+ The config object of the text backbone. Can be any of `LlamaConfig` or `MistralConfig`.
52
+ ignore_index (`int`, *optional*, defaults to -100):
53
+ The ignore index for the loss function.
54
+ audio_token_index (`int`, *optional*, defaults to 32000):
55
+ The audio token index to encode the audio prompt.
56
+ stack_factor (`int`, *optional*, defaults to 8):
57
+ Audio downsampling factor for the multimodal projector.
58
+ norm_init (`float`, *optional*, defaults to 0.4):
59
+ The initialization value for the layer normalization.
60
+ projector_act (`str`, *optional*, defaults to `"swiglu"`):
61
+ The activation function used by the multimodal projector.
62
+ text_model_lora_config (`LoraConfigSimplified`, *optional*):
63
+ The LoRA configuration for finetuning the text model.
64
+ audio_model_lora_config (`LoraConfigSimplified`, *optional*):
65
+ The LoRA configuration for finetuning the audio model.
66
+
67
+
68
+ Example:
69
+
70
+ ```python
71
+ >>> from transformers import UltravoxForConditionalGeneration, Wav2Vec2Config, UltravoxConfig, LlamaConfig
72
+
73
+ >>> # Initializing an audio encoder config
74
+ >>> audio_config = Wav2Vec2Config()
75
+
76
+ >>> # Initializing a Llama config
77
+ >>> text_config = LlamaConfig()
78
+
79
+ >>> # Initializing a default configuration
80
+ >>> configuration = UltravoxConfig(audio_config, text_config)
81
+
82
+ >>> # Initializing a completely untrained model from the configuration
83
+ >>> model = UltravoxForConditionalGeneration(configuration)
84
+
85
+ >>> # Accessing the model configuration
86
+ >>> configuration = model.config
87
+
88
+ >>> # Initialize a model from pretrained checkpoints and random projector weights
89
+ >>> config = UltravoxConfig(audio_model_id="facebook/wav2vec2-base-960h", text_model_id="meta-llama/Llama-2-7b-chat-hf")
90
+ ```"""
91
+
92
+ model_type = "ultravox"
93
+ is_composition = False
94
+
95
+ def __init__(
96
+ self,
97
+ audio_config: Optional[Dict[str, Any]] = None,
98
+ text_config: Optional[Dict[str, Any]] = None,
99
+ audio_model_id: Optional[str] = None,
100
+ text_model_id: Optional[str] = None,
101
+ ignore_index: int = -100,
102
+ audio_token_index: int = 32000,
103
+ hidden_size: int = 4096,
104
+ stack_factor: int = 8,
105
+ norm_init: float = 0.4,
106
+ projector_act: str = "swiglu",
107
+ text_model_lora_config: Optional[LoraConfigSimplified] = None,
108
+ audio_model_lora_config: Optional[LoraConfigSimplified] = None,
109
+ **kwargs,
110
+ ):
111
+ self.ignore_index = ignore_index
112
+
113
+ self.audio_model_id = audio_model_id
114
+ self.text_model_id = text_model_id
115
+ self.audio_token_index = audio_token_index
116
+
117
+ self.hidden_size = hidden_size
118
+ self.stack_factor = stack_factor
119
+ self.norm_init = norm_init
120
+ self.projector_act = projector_act
121
+
122
+ if text_model_id is not None:
123
+ self.text_config: transformers.LlamaConfig = (
124
+ transformers.AutoConfig.from_pretrained(text_model_id)
125
+ )
126
+ else:
127
+ text_config = text_config or {}
128
+ self.text_config = transformers.CONFIG_MAPPING[
129
+ text_config.get("model_type", "llama")
130
+ ](**text_config)
131
+
132
+ if audio_model_id is not None:
133
+ self.audio_config: transformers.PretrainedConfig = (
134
+ transformers.AutoConfig.from_pretrained(audio_model_id)
135
+ )
136
+ else:
137
+ audio_config = audio_config or {}
138
+ self.audio_config = transformers.CONFIG_MAPPING[
139
+ audio_config.get("model_type", "wav2vec2")
140
+ ](**audio_config)
141
+
142
+ self.text_model_lora_config = (
143
+ text_model_lora_config
144
+ if isinstance(text_model_lora_config, dict)
145
+ else dataclasses.asdict(text_model_lora_config or LoraConfigSimplified())
146
+ )
147
+ self.audio_model_lora_config = (
148
+ audio_model_lora_config
149
+ if isinstance(audio_model_lora_config, dict)
150
+ else dataclasses.asdict(audio_model_lora_config or LoraConfigSimplified())
151
+ )
152
+
153
+ self.vocab_size = self.text_config.vocab_size
154
+
155
+ self.initializer_range = self.text_config.initializer_range
156
+
157
+ super().__init__(**kwargs)
ultravox_model.py ADDED
@@ -0,0 +1,633 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import logging
2
+ from typing import Any, Dict, Optional, Set, Tuple, Union
3
+
4
+ import peft
5
+ import torch
6
+ import torch.nn as nn
7
+ import torch.nn.functional as F
8
+ import transformers
9
+ import transformers.activations
10
+ import transformers.modeling_outputs
11
+ import transformers.models
12
+ from transformers.models.whisper import modeling_whisper as whisper
13
+
14
+ # We must use relative import in this directory to allow uploading to HF Hub
15
+ # Even "from . import X" pattern doesn't work (undocumented and unclear why)
16
+ from .ultravox_config import LossConfig
17
+ from .ultravox_config import LossFunction
18
+ from .ultravox_config import UltravoxConfig
19
+
20
+
21
+ class UltravoxModel(transformers.LlamaPreTrainedModel):
22
+ """
23
+ The Ultravox model which consists of an audio encoder and a language model.
24
+
25
+ Audio input is processed by the audio encoder, then every `stack_factor` frames are stacked together and
26
+ projected to the language model's embedding space using a few linear layers.
27
+ The text is embedded by the language model as usual and then the audio and text embeddings are merged together.
28
+
29
+ A special token `<|audio|>` is used to indicate the start of the audio embeddings in the merged embeddings.
30
+
31
+ Parameters:
32
+ config: Model configuration class with all the parameters of the model.
33
+ """
34
+
35
+ config_class = UltravoxConfig
36
+ config: UltravoxConfig # for type hinting
37
+ _no_split_modules = ["Wav2Vec2Model", "WhisperEncoder", "LlamaDecoderLayer"]
38
+ # We minimize the weights in state_dict in order to reduce the size of the checkpoint
39
+ # The issue is that load_pretrained() uses state_dict() keys to know what keys are expected
40
+ # As such we have to tell is to ignore some keys that are not always in the model
41
+ _keys_to_ignore_on_load_unexpected = ["audio_tower.*", "language_model.*"]
42
+ # Usually we load encoder weights from a pretrained model, so we don't want to load the decoder weights
43
+ # Technically we never hit this issue because these keys are already removed from state_dict() however,
44
+ # but there's no harm in keeping it here for when we change that behavior.
45
+ _keys_to_ignore_on_load_missing = ["audio_tower.*"]
46
+
47
+ def __init__(self, config: UltravoxConfig):
48
+ super().__init__(config)
49
+
50
+ self.keep_params: Set[str] = set()
51
+ self.vocab_size = config.vocab_size
52
+
53
+ self.audio_tower = self._create_audio_tower(config)
54
+ self.multi_modal_projector = UltravoxProjector(config)
55
+ self.language_model = self._create_language_model(config)
56
+
57
+ self.loss_config = LossConfig()
58
+ self.post_init()
59
+
60
+ def get_input_embeddings(self):
61
+ return self.language_model.get_input_embeddings()
62
+
63
+ def set_input_embeddings(self, value):
64
+ self.language_model.set_input_embeddings(value)
65
+
66
+ def get_output_embeddings(self):
67
+ return self.language_model.get_output_embeddings()
68
+
69
+ def set_output_embeddings(self, new_embeddings):
70
+ self.language_model.set_output_embeddings(new_embeddings)
71
+
72
+ def set_decoder(self, decoder):
73
+ self.language_model.set_decoder(decoder)
74
+
75
+ def get_decoder(self):
76
+ return self.language_model.get_decoder()
77
+
78
+ def tie_weights(self):
79
+ return self.language_model.tie_weights()
80
+
81
+ def set_loss_config(self, loss_config: LossConfig):
82
+ self.loss_config = loss_config
83
+
84
+ def _setup_cache(
85
+ self, cache_cls, max_batch_size: int, max_cache_len: Optional[int] = None
86
+ ):
87
+ self.language_model._setup_cache(cache_cls, max_batch_size, max_cache_len)
88
+
89
+ def _reorder_cache(self, past_key_values, beam_idx):
90
+ return self.language_model._reorder_cache(past_key_values, beam_idx)
91
+
92
+ def resize_token_embeddings(
93
+ self,
94
+ new_num_tokens: Optional[int] = None,
95
+ pad_to_multiple_of: Optional[int] = None,
96
+ ) -> nn.Embedding:
97
+ model_embeds = self.language_model.resize_token_embeddings(
98
+ new_num_tokens, pad_to_multiple_of
99
+ )
100
+ # update vocab size
101
+ self.config.text_config.vocab_size = model_embeds.num_embeddings
102
+ self.config.vocab_size = model_embeds.num_embeddings
103
+ self.vocab_size = model_embeds.num_embeddings
104
+ return model_embeds
105
+
106
+ def _compute_kl_loss(
107
+ self,
108
+ lm_output: transformers.modeling_outputs.CausalLMOutputWithPast,
109
+ labels: Optional[torch.Tensor] = None,
110
+ past_key_values: Optional[Union[Tuple, transformers.cache_utils.Cache]] = None,
111
+ alt_input_ids: Optional[torch.Tensor] = None,
112
+ alt_attention_mask: Optional[torch.Tensor] = None,
113
+ alt_labels: Optional[torch.Tensor] = None,
114
+ **kwargs,
115
+ ):
116
+ # disable gradient computation for the teacher model
117
+ with torch.no_grad():
118
+ # compute the teacher (text-only) model's distribution
119
+ alt_inputs_embeds = self.get_input_embeddings().forward(alt_input_ids)
120
+ alt_lm_output = self.language_model.forward(
121
+ inputs_embeds=alt_inputs_embeds,
122
+ labels=alt_labels,
123
+ attention_mask=alt_attention_mask,
124
+ past_key_values=past_key_values,
125
+ **kwargs,
126
+ )
127
+ # compute the KL divergence loss between the two models
128
+ kl_loss = F.kl_div(
129
+ F.log_softmax(
130
+ lm_output.logits[labels != -100] / self.loss_config.kl_temperature,
131
+ dim=-1,
132
+ ),
133
+ F.softmax(
134
+ alt_lm_output.logits[alt_labels != -100]
135
+ / self.loss_config.kl_temperature,
136
+ dim=-1,
137
+ ),
138
+ reduction="batchmean",
139
+ )
140
+ return {"loss": kl_loss}
141
+
142
+ def forward(
143
+ self,
144
+ input_ids: torch.Tensor,
145
+ audio_values: Optional[torch.FloatTensor] = None,
146
+ inputs_embeds: Optional[torch.FloatTensor] = None,
147
+ labels: Optional[torch.Tensor] = None,
148
+ attention_mask: Optional[torch.Tensor] = None,
149
+ audio_token_start_idx: Optional[torch.Tensor] = None,
150
+ audio_token_len: Optional[torch.Tensor] = None,
151
+ past_key_values: Optional[Union[Tuple, transformers.cache_utils.Cache]] = None,
152
+ # the alt_* fields are needed for KL divergence loss
153
+ alt_input_ids: Optional[torch.Tensor] = None,
154
+ alt_attention_mask: Optional[torch.Tensor] = None,
155
+ alt_labels: Optional[torch.Tensor] = None,
156
+ **kwargs,
157
+ ) -> Union[Tuple, transformers.modeling_outputs.CausalLMOutputWithPast]:
158
+ """
159
+ Forward pass for the Ultravox model.
160
+
161
+ `input_ids` are the tokenized text input. They are embedded by the language model as usual.
162
+ `audio_values` are processed by the audio encoder and then every `stack_factor` frames are stacked together and
163
+ projected to the language model's embedding space using a few linear layers.
164
+ The audio and text embeddings are merged together. A special token `<|audio|>` is used to indicate the start
165
+ of the audio embeddings in the merged embeddings.
166
+
167
+ Args:
168
+ input_ids: The tokenized text input.
169
+ audio_values: The processed audio values.
170
+ inputs_embeds: The embeddings for the input tokens.
171
+ labels: The tokenized text labels.
172
+ attention_mask: The attention mask for the input.
173
+ position_ids: The position ids for the input.
174
+ past_key_values: The past key value cache for the language model attention layers.
175
+ **kwargs: Additional keyword arguments. Passed directly to the language model.
176
+ """
177
+ if inputs_embeds is None:
178
+ # B x T -> B x T x D
179
+ inputs_embeds = self.get_input_embeddings().forward(input_ids)
180
+
181
+ if audio_values is not None:
182
+ assert (
183
+ audio_token_start_idx is not None and audio_token_len is not None
184
+ ), "audio_token_start_idx and audio_token_len must be provided if audio_values are provided."
185
+ assert (
186
+ len(audio_token_start_idx) == len(audio_token_len) == len(audio_values)
187
+ ), "audio_token_start_idx, audio_token_len, and audio_values must have the same batch size."
188
+
189
+ # B x A/3200 x D
190
+ audio_tower_output = self.audio_tower.forward(
191
+ audio_values
192
+ ).last_hidden_state
193
+ audio_tower_output = audio_tower_output.to(inputs_embeds.dtype)
194
+
195
+ audio_embeds = self.multi_modal_projector.forward(audio_tower_output)
196
+
197
+ # combine audio and text embeddings
198
+ for i, (audio, start, length) in enumerate(
199
+ zip(audio_embeds, audio_token_start_idx, audio_token_len)
200
+ ):
201
+ length = min(length, audio.shape[0])
202
+ inputs_embeds[i, start : start + length] = audio[:length]
203
+
204
+ lm_output = self.language_model.forward(
205
+ inputs_embeds=inputs_embeds,
206
+ labels=labels,
207
+ attention_mask=attention_mask,
208
+ past_key_values=past_key_values,
209
+ **kwargs,
210
+ )
211
+ if self.training:
212
+ if self.loss_config.loss_function == LossFunction.CrossEntropy:
213
+ return lm_output
214
+ elif self.loss_config.loss_function == LossFunction.KL_Divergence:
215
+ return self._compute_kl_loss(
216
+ lm_output=lm_output,
217
+ labels=labels,
218
+ past_key_values=past_key_values,
219
+ alt_input_ids=alt_input_ids,
220
+ alt_attention_mask=alt_attention_mask,
221
+ alt_labels=alt_labels,
222
+ **kwargs,
223
+ )
224
+ else:
225
+ raise ValueError(
226
+ f"Unsupported loss function: {self.loss_config.loss_function}"
227
+ )
228
+ else:
229
+ return lm_output
230
+
231
+ def prepare_inputs_for_generation(
232
+ self,
233
+ input_ids: torch.Tensor,
234
+ audio_values: Optional[torch.FloatTensor] = None,
235
+ audio_token_start_idx: Optional[torch.Tensor] = None,
236
+ audio_token_len: Optional[torch.Tensor] = None,
237
+ past_key_values: Optional[Union[Tuple, transformers.cache_utils.Cache]] = None,
238
+ attention_mask: Optional[torch.Tensor] = None,
239
+ inputs_embeds: Optional[torch.Tensor] = None,
240
+ cache_position: Optional[torch.Tensor] = None,
241
+ **kwargs,
242
+ ) -> Dict[str, Any]:
243
+ model_input = self.language_model.prepare_inputs_for_generation(
244
+ input_ids=input_ids,
245
+ past_key_values=past_key_values,
246
+ attention_mask=attention_mask,
247
+ inputs_embeds=inputs_embeds,
248
+ cache_position=cache_position,
249
+ **kwargs,
250
+ )
251
+
252
+ # include audio information in model_input only when it is needed during prefilling
253
+ # audio_token_start_idx should always be relative to the current cache position
254
+ prefill_start_idx = 0 if cache_position is None else cache_position[0]
255
+ if (
256
+ audio_values is not None
257
+ and audio_token_start_idx is not None
258
+ and prefill_start_idx <= torch.max(audio_token_start_idx)
259
+ ):
260
+ model_input["audio_values"] = audio_values
261
+ model_input["audio_token_start_idx"] = (
262
+ audio_token_start_idx - prefill_start_idx
263
+ )
264
+ model_input["audio_token_len"] = audio_token_len
265
+
266
+ return model_input
267
+
268
+ @classmethod
269
+ def _create_audio_tower(
270
+ cls, config: UltravoxConfig
271
+ ) -> Union[transformers.Wav2Vec2Model, "ModifiedWhisperEncoder"]:
272
+ if config.audio_model_id is not None:
273
+ if "whisper" in config.audio_model_id is not None:
274
+ audio_tower = ModifiedWhisperEncoder.from_pretrained(
275
+ config.audio_model_id
276
+ )
277
+ else:
278
+ audio_tower = transformers.AutoModel.from_pretrained(
279
+ config.audio_model_id
280
+ )
281
+ else:
282
+ if "whisper" in config.audio_config._name_or_path:
283
+ audio_tower = ModifiedWhisperEncoder(config.audio_config)
284
+ else:
285
+ with transformers.modeling_utils.no_init_weights():
286
+ # we only ever use from_config if the weights are retrained, hence initializing is not
287
+ # required. This makes the model quite creation faster since init on CPU is quite slow.
288
+ audio_tower = transformers.AutoModel.from_config(
289
+ config.audio_config
290
+ )
291
+
292
+ if isinstance(
293
+ audio_tower,
294
+ (transformers.Wav2Vec2BertModel, transformers.WhisperModel),
295
+ ):
296
+ # For these models we only need the encoder part
297
+ # Wav2Vec2BertModel -> Wav2Vec2BertEncoder
298
+ # WhisperModel -> WhisperEncoder
299
+ audio_tower = audio_tower.encoder
300
+
301
+ audio_tower = apply_lora(audio_tower, config.audio_model_lora_config)
302
+ return audio_tower
303
+
304
+ @classmethod
305
+ def _create_language_model(
306
+ cls, config: UltravoxConfig
307
+ ) -> transformers.LlamaForCausalLM:
308
+ if config.text_model_id is not None:
309
+ language_model = transformers.AutoModelForCausalLM.from_pretrained(
310
+ config.text_model_id, attn_implementation=config._attn_implementation
311
+ )
312
+ else:
313
+ with transformers.modeling_utils.no_init_weights():
314
+ # we only ever use from_config if the weights are retrained, hence initializing is not
315
+ # required. This makes the model quite creation faster since init on CPU is quite slow.
316
+ language_model = transformers.AutoModelForCausalLM.from_config(
317
+ config.text_config, attn_implementation=config._attn_implementation
318
+ )
319
+
320
+ language_model = apply_lora(language_model, config.text_model_lora_config)
321
+ return language_model
322
+
323
+ def _add_language_model_weights_to_keep(self):
324
+ if self.config.text_model_id is not None:
325
+ self.config.text_model_id = None
326
+ self.keep_params.update(
327
+ set(
328
+ [
329
+ f"language_model.{name}"
330
+ for name, _ in self.language_model.named_parameters()
331
+ ]
332
+ )
333
+ )
334
+
335
+ def _add_audio_tower_weights_to_keep(self):
336
+ if self.config.audio_model_id is not None:
337
+ self.config.audio_model_id = None
338
+ self.keep_params.update(
339
+ set(
340
+ [
341
+ f"audio_tower.{name}"
342
+ for name, _ in self.audio_tower.named_parameters()
343
+ ]
344
+ )
345
+ )
346
+
347
+ def merge_and_unload(self):
348
+ if isinstance(self.language_model, peft.PeftModel):
349
+ self.language_model = self.language_model.merge_and_unload()
350
+ # no need to download base language model weights anymore, so we can remove the id
351
+ self._add_language_model_weights_to_keep()
352
+
353
+ if isinstance(self.audio_tower, peft.PeftModel):
354
+ self.audio_tower = self.audio_tower.merge_and_unload()
355
+ # no need to download base audio model weights anymore, so we can remove the id
356
+ self._add_audio_tower_weights_to_keep()
357
+
358
+ for param in ["text_model_lora_config", "audio_model_lora_config"]:
359
+ if hasattr(self.config, param):
360
+ delattr(self.config, param)
361
+
362
+ def push_to_hub(self, *args, **kwargs):
363
+ self.merge_and_unload()
364
+ self.to(self.language_model.dtype)
365
+ return super().push_to_hub(*args, **kwargs)
366
+
367
+ def state_dict(self, *args, **kwargs):
368
+ named_params = dict(self.named_parameters())
369
+ state_dict = super().state_dict(*args, **kwargs)
370
+
371
+ state_dict = {
372
+ k: v
373
+ for k, v in state_dict.items()
374
+ if k in self.keep_params
375
+ or (k in named_params and named_params[k].requires_grad)
376
+ }
377
+ return state_dict
378
+
379
+ def load_state_dict(
380
+ self,
381
+ state_dict: Dict[str, Any],
382
+ *args,
383
+ **kwargs,
384
+ ):
385
+ self.keep_params.update(set(state_dict.keys()))
386
+ return super().load_state_dict(state_dict, *args, **kwargs)
387
+
388
+ def print_trainable_parameters(self):
389
+ """
390
+ Prints the number of trainable parameters in the model (reuses Peft model's method)
391
+ """
392
+ count_params = peft.peft_model.PeftModel.get_nb_trainable_parameters
393
+
394
+ trainable_params, all_param = count_params(self)
395
+
396
+ logging.info(
397
+ f"trainable params: {trainable_params:,d} || all params: {all_param:,d}"
398
+ f" || trainable%: {100 * trainable_params / all_param:.1f}%"
399
+ )
400
+
401
+ lm_trainable_params, lm_all_params = count_params(self.language_model)
402
+ audio_trainable_params, audio_all_params = count_params(self.audio_tower)
403
+
404
+ projector_trainable_params = (
405
+ trainable_params - lm_trainable_params - audio_trainable_params
406
+ )
407
+ projector_all_params = all_param - lm_all_params - audio_all_params
408
+
409
+ logging.info(
410
+ f"Trainable%: "
411
+ f" LLM: {100 * lm_trainable_params / lm_all_params:.1f}%"
412
+ f" || Audio Encoder: {100 * audio_trainable_params / audio_all_params:.1f}%"
413
+ f" || Projector: {100 * projector_trainable_params / projector_all_params:.1f}%"
414
+ )
415
+
416
+
417
+ def is_cache_empty(
418
+ past_key_values: Optional[Union[Tuple, transformers.cache_utils.Cache]]
419
+ ) -> bool:
420
+ """
421
+ Check if the cache is empty.
422
+ """
423
+ if past_key_values is None:
424
+ return True
425
+ if isinstance(past_key_values, tuple):
426
+ return all(len(c) == 0 for c in past_key_values)
427
+ return past_key_values.get_seq_length() == 0
428
+
429
+
430
+ def apply_lora(model: torch.nn.Module, lora_config: dict) -> torch.nn.Module:
431
+ """
432
+ Applies LoRA finetuning to the model. If the `r` parameter is set to 0, the model is frozen instead.
433
+ """
434
+ lora_config = peft.LoraConfig(**lora_config or {})
435
+
436
+ if lora_config.r == 0:
437
+ # freeze the model entirely
438
+ for param in model.parameters():
439
+ param.requires_grad = False
440
+ else:
441
+ model = peft.get_peft_model(model, lora_config)
442
+
443
+ return model
444
+
445
+
446
+ class StackAudioFrames(nn.Module):
447
+ """
448
+ Stack the audio embedding frames to reduce the sequence length by a factor of `stack_factor`.
449
+
450
+ The number of output frames will be `ceil(T / stack_factor) + 1` where `T` is the number of input frames.
451
+ NOTE: the extra +1 is intentional: in case the number of audio tokens are over-estimated by the processor,
452
+ we want to make sure `processor.audio_token_replacement` (i.e. EOS) doesn't get leaked into the middle of embeddings.
453
+ In most cases this extra padding will get removed in the model's forward function so it has no effect.
454
+ """
455
+
456
+ def __init__(self, stack_factor: int = 8):
457
+ super().__init__()
458
+ self.stack_factor = stack_factor
459
+
460
+ def forward(self, audio_embeds: torch.Tensor) -> torch.Tensor:
461
+ B, T, C = audio_embeds.shape
462
+ T_pad = (T + self.stack_factor - 1) // self.stack_factor * self.stack_factor
463
+ audio_embeds = F.pad(audio_embeds, (0, 0, 0, T_pad - T + self.stack_factor))
464
+ B, T, C = audio_embeds.shape
465
+ audio_embeds = audio_embeds.view(
466
+ B, T // self.stack_factor, C * self.stack_factor
467
+ )
468
+ return audio_embeds
469
+
470
+
471
+ class RMSNorm(transformers.models.llama.modeling_llama.LlamaRMSNorm):
472
+ def __init__(self, hidden_size: int, init: float = 1, eps: float = 1e-6):
473
+ super().__init__(hidden_size=hidden_size, eps=eps)
474
+ self.weight.data.fill_(init)
475
+
476
+
477
+ class SwiGLU(nn.Module):
478
+ def forward(self, x):
479
+ x, gate = x.chunk(2, dim=-1)
480
+ return F.silu(gate) * x
481
+
482
+
483
+ class UltravoxProjector(nn.Sequential):
484
+ def __init__(self, config: UltravoxConfig):
485
+ super().__init__()
486
+ self.hidden_dim = config.hidden_size
487
+ self._pad_and_stack = StackAudioFrames(config.stack_factor)
488
+ dim = config.audio_config.hidden_size * config.stack_factor
489
+ self.ln_pre = RMSNorm(dim, init=config.norm_init)
490
+ self.linear_1 = nn.Linear(dim, self.hidden_dim, bias=False)
491
+ dim = self.hidden_dim
492
+ self.act = transformers.activations.get_activation(config.projector_act)
493
+ dim = dim // 2 if config.projector_act == "swiglu" else dim
494
+ self.linear_2 = nn.Linear(dim, config.text_config.hidden_size, bias=False)
495
+ self.ln_post = RMSNorm(config.text_config.hidden_size, init=config.norm_init)
496
+
497
+ def forward(self, audio_features: torch.Tensor) -> torch.Tensor:
498
+ audio_features = self._pad_and_stack(audio_features)
499
+ audio_features = self.ln_pre(audio_features)
500
+ hidden_states = self.linear_1(audio_features)
501
+ hidden_states = self.act(hidden_states)
502
+ hidden_states = self.linear_2(hidden_states)
503
+ hidden_states = self.ln_post(hidden_states)
504
+ return hidden_states
505
+
506
+
507
+ class ModifiedWhisperEncoder(whisper.WhisperEncoder):
508
+ """
509
+ Encoder portion of OpenAI's Whisper model.
510
+
511
+ This implementation is a slightly modified version of HF Transformers' Whisper Encoder, with only a few fixes:
512
+ 1. base_model_prefix updated to allow for doing `.from_pretrained` directly on the encoder
513
+ 2. allow less than 30 second of audio padding to be passed in:
514
+ - relaxed ValueError check for `input_features` length to be less than or equal to `expected_seq_length` instead of strictly equal
515
+ - embed_pos is now sliced to match the length of `inputs_embeds`
516
+
517
+ Original: https://github.com/huggingface/transformers/blob/main/src/transformers/models/whisper/modeling_whisper.py
518
+ """
519
+
520
+ base_model_prefix = "model.encoder"
521
+
522
+ def forward(
523
+ self,
524
+ input_features,
525
+ attention_mask=None,
526
+ head_mask=None,
527
+ output_attentions=None,
528
+ output_hidden_states=None,
529
+ return_dict=None,
530
+ ):
531
+ expected_seq_length = (
532
+ self.config.max_source_positions
533
+ * self.conv1.stride[0]
534
+ * self.conv2.stride[0]
535
+ )
536
+ if input_features.shape[-1] > expected_seq_length:
537
+ raise ValueError(
538
+ f"Whisper expects the mel input features to be of length {expected_seq_length} or less, but found {input_features.shape[-1]}. Make sure to pad the input mel features to {expected_seq_length}."
539
+ )
540
+
541
+ output_attentions = (
542
+ output_attentions
543
+ if output_attentions is not None
544
+ else self.config.output_attentions
545
+ )
546
+ output_hidden_states = (
547
+ output_hidden_states
548
+ if output_hidden_states is not None
549
+ else self.config.output_hidden_states
550
+ )
551
+ return_dict = (
552
+ return_dict if return_dict is not None else self.config.use_return_dict
553
+ )
554
+ inputs_embeds = nn.functional.gelu(self.conv1(input_features))
555
+ inputs_embeds = nn.functional.gelu(self.conv2(inputs_embeds))
556
+
557
+ inputs_embeds = inputs_embeds.permute(0, 2, 1)
558
+ embed_pos = self.embed_positions.weight[: inputs_embeds.size(-2)]
559
+
560
+ hidden_states = inputs_embeds + embed_pos
561
+ hidden_states = nn.functional.dropout(
562
+ hidden_states, p=self.dropout, training=self.training
563
+ )
564
+
565
+ encoder_states = () if output_hidden_states else None
566
+ all_attentions = () if output_attentions else None
567
+
568
+ # check if head_mask has a correct number of layers specified if desired
569
+ if head_mask is not None:
570
+ assert head_mask.size()[0] == (
571
+ len(self.layers)
572
+ ), f"The head_mask should be specified for {len(self.layers)} layers, but it is for {head_mask.size()[0]}."
573
+
574
+ for idx, encoder_layer in enumerate(self.layers):
575
+ if output_hidden_states:
576
+ encoder_states = encoder_states + (hidden_states,)
577
+ # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
578
+ to_drop = False
579
+ if self.training:
580
+ dropout_probability = torch.rand([])
581
+ if dropout_probability < self.layerdrop: # skip the layer
582
+ to_drop = True
583
+
584
+ if to_drop:
585
+ layer_outputs = (None, None)
586
+ else:
587
+ if self.gradient_checkpointing and self.training:
588
+ layer_outputs = self._gradient_checkpointing_func(
589
+ encoder_layer.__call__,
590
+ hidden_states,
591
+ None,
592
+ (head_mask[idx] if head_mask is not None else None),
593
+ output_attentions,
594
+ )
595
+ else:
596
+ layer_outputs = encoder_layer(
597
+ hidden_states,
598
+ None,
599
+ layer_head_mask=(
600
+ head_mask[idx] if head_mask is not None else None
601
+ ),
602
+ output_attentions=output_attentions,
603
+ )
604
+
605
+ hidden_states = layer_outputs[0]
606
+
607
+ if output_attentions:
608
+ all_attentions = all_attentions + (layer_outputs[1],)
609
+
610
+ hidden_states = self.layer_norm(hidden_states)
611
+ if output_hidden_states:
612
+ encoder_states = encoder_states + (hidden_states,)
613
+
614
+ if not return_dict:
615
+ return tuple(
616
+ v
617
+ for v in [hidden_states, encoder_states, all_attentions]
618
+ if v is not None
619
+ )
620
+ return transformers.modeling_outputs.BaseModelOutput(
621
+ last_hidden_state=hidden_states,
622
+ hidden_states=encoder_states,
623
+ attentions=all_attentions,
624
+ )
625
+
626
+
627
+ UltravoxConfig.register_for_auto_class()
628
+ UltravoxModel.register_for_auto_class()
629
+
630
+ transformers.AutoConfig.register("ultravox", UltravoxConfig)
631
+ transformers.AutoModel.register(UltravoxConfig, UltravoxModel)
632
+
633
+ transformers.activations.ACT2FN["swiglu"] = SwiGLU
ultravox_pipeline.py ADDED
@@ -0,0 +1,127 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import logging
2
+ from typing import Any, Dict, List, Optional
3
+
4
+ import numpy as np
5
+ import transformers
6
+
7
+ # We must use relative import in this directory to allow uploading to HF Hub
8
+ # Even "from . import X" pattern doesn't work (undocumented and unclear why)
9
+ from .ultravox_model import UltravoxModel
10
+ from .ultravox_processing import UltravoxProcessor
11
+
12
+
13
+ class UltravoxPipeline(transformers.Pipeline):
14
+ def __init__(
15
+ self,
16
+ model: UltravoxModel,
17
+ tokenizer: Optional[transformers.PreTrainedTokenizerBase] = None,
18
+ audio_processor: Optional[transformers.ProcessorMixin] = None,
19
+ **kwargs
20
+ ):
21
+ if tokenizer is None:
22
+ try:
23
+ tokenizer = transformers.AutoTokenizer.from_pretrained(
24
+ model.config._name_or_path
25
+ )
26
+ except:
27
+ tokenizer = transformers.AutoTokenizer.from_pretrained(
28
+ model.config.text_model_id or model.config.text_config._name_or_path
29
+ )
30
+
31
+ if audio_processor is None:
32
+ audio_processor = transformers.AutoProcessor.from_pretrained(
33
+ model.config.audio_model_id or model.config.audio_config._name_or_path
34
+ )
35
+
36
+ self.processor = UltravoxProcessor(
37
+ audio_processor=audio_processor,
38
+ tokenizer=tokenizer,
39
+ stack_factor=model.config.stack_factor,
40
+ )
41
+
42
+ super().__init__(model=model, tokenizer=tokenizer, **kwargs)
43
+
44
+ def _sanitize_parameters(self, **kwargs):
45
+ generation_keys = ["temperature", "max_new_tokens", "repetition_penalty"]
46
+ generation_kwargs = {k: kwargs[k] for k in kwargs if k in generation_keys}
47
+ return {}, generation_kwargs, {}
48
+
49
+ def preprocess(self, inputs: Dict[str, Any]):
50
+ turns: list = inputs.get("turns", [])
51
+
52
+ audio = inputs.get("audio", None)
53
+ # Convert to float32 if needed.
54
+ if isinstance(audio, np.ndarray):
55
+ if audio.dtype == np.float64:
56
+ audio = audio.astype(np.float32)
57
+ elif audio.dtype == np.int16:
58
+ audio = audio.astype(np.float32) / np.float32(32768.0)
59
+ elif audio.dtype == np.int32:
60
+ audio = audio.astype(np.float32) / np.float32(2147483648.0)
61
+
62
+ if audio is not None and (len(turns) == 0 or turns[-1]["role"] != "user"):
63
+ prompt = inputs.get("prompt", "<|audio|>")
64
+ if "<|audio|>" not in prompt:
65
+ logging.warning(
66
+ "Prompt does not contain '<|audio|>', appending '<|audio|>' to the end of the prompt."
67
+ )
68
+
69
+ prompt += " <|audio|>"
70
+ turns.append({"role": "user", "content": prompt})
71
+
72
+ text = self.processor.tokenizer.apply_chat_template(
73
+ turns, add_generation_prompt=True, tokenize=False
74
+ )
75
+
76
+ if "sampling_rate" not in inputs and audio is not None:
77
+ logging.warning(
78
+ "No sampling rate provided, using default of 16kHz. We highly recommend providing the correct sampling rate."
79
+ )
80
+
81
+ output = self.processor(
82
+ text=text,
83
+ audio=audio,
84
+ sampling_rate=inputs.get("sampling_rate", 16000),
85
+ )
86
+ if "audio_values" in output:
87
+ output["audio_values"] = output["audio_values"].to(self.model.dtype)
88
+
89
+ return output
90
+
91
+ def _forward(
92
+ self,
93
+ model_inputs: Dict[str, Any],
94
+ temperature: Optional[float] = None,
95
+ max_new_tokens: Optional[int] = None,
96
+ repetition_penalty: float = 1.1,
97
+ ) -> List[int]:
98
+ temperature = temperature or None
99
+ do_sample = temperature is not None
100
+
101
+ terminators = [self.tokenizer.eos_token_id]
102
+ if "<|eot_id|>" in self.tokenizer.added_tokens_encoder:
103
+ terminators.append(self.tokenizer.convert_tokens_to_ids("<|eot_id|>"))
104
+
105
+ input_len = model_inputs["input_ids"].shape[1]
106
+
107
+ outputs = self.model.generate(
108
+ **model_inputs,
109
+ do_sample=do_sample,
110
+ temperature=temperature,
111
+ max_new_tokens=max_new_tokens,
112
+ repetition_penalty=repetition_penalty,
113
+ eos_token_id=terminators
114
+ )
115
+ return outputs[0][input_len:]
116
+
117
+ def postprocess(self, model_outputs) -> str:
118
+ output_text = self.tokenizer.decode(model_outputs, skip_special_tokens=True)
119
+ return output_text
120
+
121
+
122
+ transformers.pipelines.PIPELINE_REGISTRY.register_pipeline(
123
+ "ultravox-pipeline",
124
+ pipeline_class=UltravoxPipeline,
125
+ pt_model=transformers.AutoModel,
126
+ type="multimodal",
127
+ )
ultravox_processing.py ADDED
@@ -0,0 +1,210 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Optional, Union
2
+
3
+ import numpy as np
4
+ import torch
5
+ import transformers
6
+
7
+ from .ultravox_config import UltravoxConfig
8
+
9
+
10
+ class UltravoxProcessor(transformers.ProcessorMixin):
11
+ """
12
+ Constructs an Ultravox processor which wraps an audio processor and a tokenizer into a single processor.
13
+
14
+ Args:
15
+ audio_processor: The audio processor for the audio encoder.
16
+ tokenizer: The tokenizer for the language model.
17
+ """
18
+
19
+ attributes = ["audio_processor", "tokenizer"]
20
+ audio_processor_class = (
21
+ "Wav2Vec2Processor",
22
+ "SeamlessM4TFeatureExtractor",
23
+ "WhisperProcessor",
24
+ )
25
+ tokenizer_class = (
26
+ "PreTrainedTokenizer",
27
+ "PreTrainedTokenizerFast",
28
+ )
29
+
30
+ tokenizer: transformers.PreTrainedTokenizerBase
31
+ audio_processor: transformers.ProcessorMixin
32
+
33
+ def __init__(
34
+ self,
35
+ audio_processor=None,
36
+ tokenizer=None,
37
+ audio_padding: str = "longest",
38
+ encoder_ds_factor: int = 320,
39
+ stack_factor: int = 8,
40
+ audio_placeholder: str = "<|audio|>",
41
+ ):
42
+ """
43
+ Args:
44
+ audio_processor: The audio processor for the audio encoder.
45
+ tokenizer: The tokenizer for the language model.
46
+ audio_padding: The padding strategy for the audio encoder.
47
+ encoder_ds_factor: The downsample factor of the audio encoder.
48
+ stack_factor: The factor by which the audio encoder output is stacked in the multimodal projector.
49
+ audio_placeholder: The placeholder for the audio in the text.
50
+ """
51
+ self.audio_padding = audio_padding
52
+ self.encoder_ds_factor = encoder_ds_factor
53
+ self.stack_factor = stack_factor
54
+ self.audio_placeholder = audio_placeholder
55
+ self.audio_token_replacement = tokenizer.eos_token
56
+ assert (
57
+ self.audio_token_replacement is not None
58
+ ), "The tokenizer has no EOS token. Cannot recover."
59
+ if tokenizer.pad_token_id is None:
60
+ tokenizer.pad_token_id = tokenizer.eos_token_id
61
+
62
+ super().__init__(audio_processor=audio_processor, tokenizer=tokenizer)
63
+
64
+ @classmethod
65
+ def from_pretrained(cls, pretrained_model_name_or_path, **kwargs):
66
+ config: UltravoxConfig = transformers.AutoConfig.from_pretrained(
67
+ pretrained_model_name_or_path, **kwargs
68
+ )
69
+ audio_processor = transformers.AutoProcessor.from_pretrained(
70
+ config.audio_model_id
71
+ or config.audio_config._name_or_path
72
+ or "facebook/wav2vec2-base-960h"
73
+ )
74
+
75
+ tokenizer = transformers.AutoTokenizer.from_pretrained(
76
+ pretrained_model_name_or_path, **kwargs
77
+ )
78
+ tokenizer.padding_side = "left"
79
+ tokenizer.pad_token = tokenizer.eos_token
80
+
81
+ return cls(
82
+ audio_processor=audio_processor,
83
+ tokenizer=tokenizer,
84
+ stack_factor=config.stack_factor,
85
+ )
86
+
87
+ def __call__(
88
+ self,
89
+ text: Optional[str] = None,
90
+ audio: Optional[Union[np.ndarray, torch.Tensor]] = None,
91
+ sampling_rate: Optional[int] = None,
92
+ return_tensors: Optional[
93
+ Union[str, transformers.TensorType]
94
+ ] = transformers.TensorType.PYTORCH,
95
+ **kwargs,
96
+ ) -> transformers.BatchFeature:
97
+ """
98
+ Main method to prepare for the model one text sequence and audio. This method forwards the `text`
99
+ and `kwargs` arguments to PreTrainedTokenizerFast's [`~PreTrainedTokenizerFast.__call__`] if `text` is not `None` to encode
100
+ the text. To prepare the audio(s), this method forwards the `audio`, `sampling_rate` and `kwargs` arguments to
101
+ audio processor's [`~Wav2Vec2Processor.__call__`] if `audio` is not `None`. Please refer to the docstring
102
+ of the above two methods for more information.
103
+
104
+ Args:
105
+ text (`str`, `List[str]`):
106
+ The sequence to be encoded. Sequence can be a string or (pretokenized string).
107
+ audio (`np.ndarray`, `torch.Tensor`, `List[np.ndarray]`, `List[torch.Tensor]`):
108
+ The audio to be prepared. Audio can be NumPy array or PyTorch tensor. In case of a
109
+ NumPy array/PyTorch tensor, each audio should be of shape (C, T), where C is a number of channels, and T the
110
+ sample length of the audio.
111
+ sampling_rate (`int`, *optional*, defaults to 16000):
112
+ Sampling rate of the input audio. We expect 16kHz audio. Don't change this value unless you know what
113
+ you are doing.
114
+ return_tensors (`str` or [`~utils.TensorType`], *optional*):
115
+ If set, will return tensors of a particular framework. Acceptable values are:
116
+
117
+ - `'tf'`: Return TensorFlow `tf.constant` objects.
118
+ - `'pt'`: Return PyTorch `torch.Tensor` objects.
119
+ - `'np'`: Return NumPy `np.ndarray` objects.
120
+ - `'jax'`: Return JAX `jnp.ndarray` objects.
121
+
122
+ Returns:
123
+ [`BatchFeature`]: A [`BatchFeature`] with the following fields:
124
+
125
+ - **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
126
+ - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
127
+ `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
128
+ `None`).
129
+ - **audio_values** -- Processed audio values to be fed to a model. Returned when `audio` is not `None`.
130
+ - **audio_token_len** -- Predicted number of audio frames: this value is guaranteed to be a close upper bound.
131
+ Returned when `audio` is not `None`.
132
+ - **audio_token_start_idx** -- The index in the tokenized text where the audio starts. Returned when `audio` is not `None`.
133
+ """
134
+ # TODO: Add support for multiple audio and text inputs.
135
+ data = {}
136
+ audio_embed_frames = 0
137
+ if audio is not None and len(audio) > 0:
138
+ if self.audio_padding == "max_length":
139
+ # 30 seconds is the expected length for Whisper
140
+ assert sampling_rate is not None, "Sampling rate must be provided."
141
+ audio_len = 30 * sampling_rate
142
+ else:
143
+ audio_len = audio.shape[-1]
144
+ # It's guaranteed that the number of frames is less than or equal to this amount.
145
+ # For Whisper this is exact AFAICT, but for Wav2Vec2 it's an upper bound.
146
+ # Currently, StackAudioFrames makes sure an over-estimation won't cause issues by padding the audio embeddings.
147
+ nb_encoder_frames = int(round(audio_len / self.encoder_ds_factor + 1e-4))
148
+ audio_embed_frames = int(np.ceil(nb_encoder_frames / self.stack_factor))
149
+ data["audio_token_len"] = [audio_embed_frames]
150
+
151
+ # Main audio processing. The processor is model-specific.
152
+ x = self.audio_processor(
153
+ audio,
154
+ sampling_rate=sampling_rate,
155
+ padding="longest",
156
+ max_length=audio_len,
157
+ **kwargs,
158
+ )
159
+ if "input_features" in x:
160
+ data["audio_values"] = x.input_features
161
+ else:
162
+ data["audio_values"] = x.input_values
163
+
164
+ if text is not None:
165
+ assert isinstance(
166
+ text, str
167
+ ), "Text must be a string. Batch mode not supported yet."
168
+ if self.audio_placeholder in text:
169
+ if "audio_token_len" not in data:
170
+ raise ValueError(
171
+ f"audio must be provided when using audio placeholder ({self.audio_placeholder}) in text."
172
+ )
173
+
174
+ start_idx = len(
175
+ self.tokenizer.encode(
176
+ text[: text.index(self.audio_placeholder)],
177
+ add_special_tokens=False,
178
+ )
179
+ )
180
+ data["audio_token_start_idx"] = [start_idx]
181
+
182
+ # Replace the audio placeholder with the audio token.
183
+ # e.g. "Transcribe\n<|audio|>" -> "Transcribe </s></s></s></s></s></s></s></s>"
184
+ # where the number of </s> is the number of audio frames.
185
+ text = text.replace(
186
+ self.audio_placeholder,
187
+ self.audio_token_replacement * audio_embed_frames,
188
+ )
189
+
190
+ # Special tokens like BOS should already have been added by the caller.
191
+ data.update(self.tokenizer([text], add_special_tokens=False, **kwargs))
192
+
193
+ return transformers.BatchFeature(data=data, tensor_type=return_tensors)
194
+
195
+ def batch_decode(self, *args, **kwargs):
196
+ return self.tokenizer.batch_decode(*args, **kwargs)
197
+
198
+ def decode(self, *args, **kwargs):
199
+ return self.tokenizer.decode(*args, **kwargs)
200
+
201
+ @property
202
+ def model_input_names(self):
203
+ tokenizer_input_names = self.tokenizer.model_input_names
204
+ audio_processor_input_names = self.audio_processor.model_input_names
205
+ return list(set(tokenizer_input_names + audio_processor_input_names))
206
+
207
+
208
+ UltravoxProcessor.register_for_auto_class()
209
+
210
+ transformers.AutoProcessor.register(UltravoxConfig, UltravoxProcessor)