fittar commited on
Commit
d1fc8af
·
1 Parent(s): ddcd29b

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +121 -0
README.md ADDED
@@ -0,0 +1,121 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ pipeline_tag: text2text-generation
5
+ inference: false
6
+ ---
7
+ # ViPE-S-CTX7
8
+
9
+ <!-- Provide a quick summary of what the model is/does. -->
10
+
11
+ ViPE: Visualize Pretty-much Everything, is the first automated model for translating any arbitrary piece of text into a visualizable prompt. It helps any text-to-image model in figurative or non-lexical language visualizations.
12
+
13
+ ### Model Description
14
+
15
+ <!-- Provide a longer summary of what this model is. -->
16
+
17
+ - **Developed by:** [Computer Graphics Group, University of Tuebingen](https://uni-tuebingen.de/fakultaeten/mathematisch-naturwissenschaftliche-fakultaet/fachbereiche/informatik/lehrstuehle/computergrafik/lehrstuhl/)
18
+ - **Model type:** Auto-Regressive
19
+ - **Language:** English
20
+ - **License:** [MIT License for Non-Commercial Use](https://github.com/Hazel1994/ViPE/blob/main/LICENSE)
21
+ - **Based on:** [GPT2-Small](https://huggingface.co/gpt2)
22
+ - **Versions:** [ViPE-M-CTX7](https://huggingface.co/fittar/ViPE-M-CTX7) (255M parameters) and [ViPE-S-CTX7](https://huggingface.co/fittar/ViPE-S-CTX7) (117M parameters),
23
+
24
+
25
+ ### Model Sources
26
+
27
+ <!-- Provide the basic links for the model. -->
28
+
29
+ - **Repository:** [Github](https://github.com/Hazel1994/ViPE)
30
+ - **Paper:** [EMNLP2023](https://2023.emnlp.org/program/)
31
+
32
+ ### Down Stream Applications
33
+ ViPE provides a robust backbone for many practical applications such as music video generation and creative writing.
34
+ - #### Music Video Genrations
35
+ - **Repository:** [Github](https://github.com/Hazel1994/ViPE)
36
+ - **Demo:** [ViPE Videos](youtube link)
37
+ - #### Creative Writing
38
+ - **Demo:** [Hugging Face Playground](https://huggingface.co/spaces/fittar/ViPE)
39
+
40
+
41
+ ### Direct Use
42
+
43
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
44
+
45
+ You can directly use the model to generate detailed prompts for any arbitrary text.
46
+
47
+
48
+ ```python
49
+ from transformers import GPT2LMHeadModel, GPT2Tokenizer
50
+
51
+
52
+ def generate(text, model, tokenizer,device,do_sample,top_k=100, epsilon_cutoff=.00005, temperature=1):
53
+ #mark the text with special tokens
54
+ text=[tokenizer.eos_token + i + tokenizer.eos_token for i in text]
55
+ batch=tokenizer(text, padding=True, return_tensors="pt")
56
+
57
+ input_ids = batch["input_ids"].to(device)
58
+ attention_mask = batch["attention_mask"].to(device)
59
+
60
+ #how many new tokens to generate at max
61
+ max_prompt_length=50
62
+
63
+ generated_ids = model.generate(input_ids=input_ids,attention_mask=attention_mask, max_new_tokens=max_prompt_length, do_sample=do_sample,top_k=top_k, epsilon_cutoff=epsilon_cutoff, temperature=temperature)
64
+ #return only the generated prompts
65
+ pred_caps = tokenizer.batch_decode(generated_ids[:, -(generated_ids.shape[1] - input_ids.shape[1]):], skip_special_tokens=True)
66
+
67
+ return pred_caps
68
+
69
+ device='cpu'
70
+ model = GPT2LMHeadModel.from_pretrained('fittar/ViPE-S-CTX7')
71
+ model.to(device)
72
+
73
+ #ViPE-M's tokenizer is identical to that of GPT2-Medium
74
+ tokenizer = GPT2Tokenizer.from_pretrained('gpt2-medium')
75
+ tokenizer.pad_token = tokenizer.eos_token
76
+
77
+ # A list of abstract/figurative or any arbitrary combinations of keywords
78
+ texts=['lalala', 'I wanna start learning', 'free your mind; you will see the other side of life', 'brave; fantasy']
79
+
80
+ prompts=generate(texts,model,tokenizer,do_sample=True,device=device)
81
+ for t,p in zip(texts,prompts):
82
+ print('{} --> {}'.format(t,p))
83
+
84
+
85
+ ```
86
+
87
+
88
+ ### Recommendations
89
+
90
+ You can use either a comma or a semicolon to combine multiple keywords. for example ['dark, fantasy, brave'] or ['This is gonna be the best day of my life; do you agree?'].
91
+ However, a semicolon draws a stronger boundary between the keywords and encourages the model to transfer the last keyword in a given context (previous keywords).
92
+
93
+
94
+ ## Training Details
95
+
96
+ ### Training Data
97
+
98
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
99
+
100
+ [More Information Needed]
101
+
102
+ ### Training Procedure
103
+
104
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
105
+
106
+
107
+ ## Evaluation
108
+
109
+ <!-- This section describes the evaluation protocols and provides the results. -->
110
+
111
+
112
+ ## Citation
113
+
114
+ If you find ViPE useful, please cite our paper.
115
+
116
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
117
+
118
+
119
+ ## Model Card Contact
120
+
121
+ [Hassan Shahmohammadi](https://fittar.me/)