fitlemon commited on
Commit
cae49e5
·
verified ·
1 Parent(s): dfd3f93

Add new SentenceTransformer model

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 1024,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,803 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - ru
4
+ license: apache-2.0
5
+ tags:
6
+ - sentence-transformers
7
+ - sentence-similarity
8
+ - feature-extraction
9
+ - generated_from_trainer
10
+ - dataset_size:904
11
+ - loss:MatryoshkaLoss
12
+ - loss:MultipleNegativesRankingLoss
13
+ base_model: BAAI/bge-m3
14
+ widget:
15
+ - source_sentence: Какой у тебя план на будущее?
16
+ sentences:
17
+ - Работа — это скучно, если не считать, что Уголовный розыск считает меня своим
18
+ работником.
19
+ - Я дам вам парабеллум, если дружба станет слишком серьезной!
20
+ - План? Из Васюков полетят сигналы на Марс, а я буду на Земле собирать деньги на
21
+ билет.
22
+ - source_sentence: Какой у тебя любимый фильм?
23
+ sentences:
24
+ - Может быть, тебе дать еще список фильмов, где много денег?
25
+ - Вам нужно путешествовать так, чтобы потом не забыть, где памятник.
26
+ - А доисторические спортсмены в матрацах не тренируются?
27
+ - source_sentence: Как ты проводишь свободное время?
28
+ sentences:
29
+ - Напиток? Командовать парадом буду я!
30
+ - Нас топят — мы выплываем, а свободное время — это для плавания!
31
+ - От мертвого осла уши получишь у Пушкина, а от фильмов — только кадры.
32
+ - source_sentence: Как ты проводишь свободное время?
33
+ sentences:
34
+ - Картина битвы мне ясна, но я предпочитаю не сражаться с скукой.
35
+ - Спорт — это для тех, кто не знает, что они произошли от коровы!
36
+ - Тайный союз меча и орала! Свободное время — это когда можно ничего не делать и
37
+ не переживать!
38
+ - source_sentence: Какой у тебя любимый фильм?
39
+ sentences:
40
+ - А что, разве я похож на человека, который не любит читать между строк?
41
+ - У нас хотя и не Париж, но кино у нас всегда с интригой!
42
+ - Фильм? Знойная женщина, мечта поэта — вот мой любимый сюжет!
43
+ pipeline_tag: sentence-similarity
44
+ library_name: sentence-transformers
45
+ metrics:
46
+ - cosine_accuracy@1
47
+ - cosine_accuracy@3
48
+ - cosine_accuracy@5
49
+ - cosine_accuracy@10
50
+ - cosine_precision@1
51
+ - cosine_precision@3
52
+ - cosine_precision@5
53
+ - cosine_precision@10
54
+ - cosine_recall@1
55
+ - cosine_recall@3
56
+ - cosine_recall@5
57
+ - cosine_recall@10
58
+ - cosine_ndcg@10
59
+ - cosine_mrr@10
60
+ - cosine_map@100
61
+ model-index:
62
+ - name: BGE m3 for Ostap project
63
+ results:
64
+ - task:
65
+ type: information-retrieval
66
+ name: Information Retrieval
67
+ dataset:
68
+ name: dim 1024
69
+ type: dim_1024
70
+ metrics:
71
+ - type: cosine_accuracy@1
72
+ value: 0.14933628318584072
73
+ name: Cosine Accuracy@1
74
+ - type: cosine_accuracy@3
75
+ value: 0.2665929203539823
76
+ name: Cosine Accuracy@3
77
+ - type: cosine_accuracy@5
78
+ value: 0.34292035398230086
79
+ name: Cosine Accuracy@5
80
+ - type: cosine_accuracy@10
81
+ value: 0.4856194690265487
82
+ name: Cosine Accuracy@10
83
+ - type: cosine_precision@1
84
+ value: 0.14933628318584072
85
+ name: Cosine Precision@1
86
+ - type: cosine_precision@3
87
+ value: 0.08886430678466074
88
+ name: Cosine Precision@3
89
+ - type: cosine_precision@5
90
+ value: 0.06858407079646017
91
+ name: Cosine Precision@5
92
+ - type: cosine_precision@10
93
+ value: 0.04856194690265486
94
+ name: Cosine Precision@10
95
+ - type: cosine_recall@1
96
+ value: 0.14933628318584072
97
+ name: Cosine Recall@1
98
+ - type: cosine_recall@3
99
+ value: 0.2665929203539823
100
+ name: Cosine Recall@3
101
+ - type: cosine_recall@5
102
+ value: 0.34292035398230086
103
+ name: Cosine Recall@5
104
+ - type: cosine_recall@10
105
+ value: 0.4856194690265487
106
+ name: Cosine Recall@10
107
+ - type: cosine_ndcg@10
108
+ value: 0.2942645243659726
109
+ name: Cosine Ndcg@10
110
+ - type: cosine_mrr@10
111
+ value: 0.23620329400196635
112
+ name: Cosine Mrr@10
113
+ - type: cosine_map@100
114
+ value: 0.2600956714540916
115
+ name: Cosine Map@100
116
+ - task:
117
+ type: information-retrieval
118
+ name: Information Retrieval
119
+ dataset:
120
+ name: dim 768
121
+ type: dim_768
122
+ metrics:
123
+ - type: cosine_accuracy@1
124
+ value: 0.14601769911504425
125
+ name: Cosine Accuracy@1
126
+ - type: cosine_accuracy@3
127
+ value: 0.26548672566371684
128
+ name: Cosine Accuracy@3
129
+ - type: cosine_accuracy@5
130
+ value: 0.3473451327433628
131
+ name: Cosine Accuracy@5
132
+ - type: cosine_accuracy@10
133
+ value: 0.48672566371681414
134
+ name: Cosine Accuracy@10
135
+ - type: cosine_precision@1
136
+ value: 0.14601769911504425
137
+ name: Cosine Precision@1
138
+ - type: cosine_precision@3
139
+ value: 0.08849557522123894
140
+ name: Cosine Precision@3
141
+ - type: cosine_precision@5
142
+ value: 0.06946902654867257
143
+ name: Cosine Precision@5
144
+ - type: cosine_precision@10
145
+ value: 0.048672566371681415
146
+ name: Cosine Precision@10
147
+ - type: cosine_recall@1
148
+ value: 0.14601769911504425
149
+ name: Cosine Recall@1
150
+ - type: cosine_recall@3
151
+ value: 0.26548672566371684
152
+ name: Cosine Recall@3
153
+ - type: cosine_recall@5
154
+ value: 0.3473451327433628
155
+ name: Cosine Recall@5
156
+ - type: cosine_recall@10
157
+ value: 0.48672566371681414
158
+ name: Cosine Recall@10
159
+ - type: cosine_ndcg@10
160
+ value: 0.2931785163867407
161
+ name: Cosine Ndcg@10
162
+ - type: cosine_mrr@10
163
+ value: 0.2343512958280655
164
+ name: Cosine Mrr@10
165
+ - type: cosine_map@100
166
+ value: 0.2581995173126666
167
+ name: Cosine Map@100
168
+ - task:
169
+ type: information-retrieval
170
+ name: Information Retrieval
171
+ dataset:
172
+ name: dim 512
173
+ type: dim_512
174
+ metrics:
175
+ - type: cosine_accuracy@1
176
+ value: 0.14823008849557523
177
+ name: Cosine Accuracy@1
178
+ - type: cosine_accuracy@3
179
+ value: 0.26548672566371684
180
+ name: Cosine Accuracy@3
181
+ - type: cosine_accuracy@5
182
+ value: 0.34513274336283184
183
+ name: Cosine Accuracy@5
184
+ - type: cosine_accuracy@10
185
+ value: 0.4944690265486726
186
+ name: Cosine Accuracy@10
187
+ - type: cosine_precision@1
188
+ value: 0.14823008849557523
189
+ name: Cosine Precision@1
190
+ - type: cosine_precision@3
191
+ value: 0.08849557522123894
192
+ name: Cosine Precision@3
193
+ - type: cosine_precision@5
194
+ value: 0.06902654867256636
195
+ name: Cosine Precision@5
196
+ - type: cosine_precision@10
197
+ value: 0.04944690265486726
198
+ name: Cosine Precision@10
199
+ - type: cosine_recall@1
200
+ value: 0.14823008849557523
201
+ name: Cosine Recall@1
202
+ - type: cosine_recall@3
203
+ value: 0.26548672566371684
204
+ name: Cosine Recall@3
205
+ - type: cosine_recall@5
206
+ value: 0.34513274336283184
207
+ name: Cosine Recall@5
208
+ - type: cosine_recall@10
209
+ value: 0.4944690265486726
210
+ name: Cosine Recall@10
211
+ - type: cosine_ndcg@10
212
+ value: 0.2965536225707287
213
+ name: Cosine Ndcg@10
214
+ - type: cosine_mrr@10
215
+ value: 0.23654261483354377
216
+ name: Cosine Mrr@10
217
+ - type: cosine_map@100
218
+ value: 0.2597641504609653
219
+ name: Cosine Map@100
220
+ - task:
221
+ type: information-retrieval
222
+ name: Information Retrieval
223
+ dataset:
224
+ name: dim 256
225
+ type: dim_256
226
+ metrics:
227
+ - type: cosine_accuracy@1
228
+ value: 0.14491150442477876
229
+ name: Cosine Accuracy@1
230
+ - type: cosine_accuracy@3
231
+ value: 0.2688053097345133
232
+ name: Cosine Accuracy@3
233
+ - type: cosine_accuracy@5
234
+ value: 0.34845132743362833
235
+ name: Cosine Accuracy@5
236
+ - type: cosine_accuracy@10
237
+ value: 0.4911504424778761
238
+ name: Cosine Accuracy@10
239
+ - type: cosine_precision@1
240
+ value: 0.14491150442477876
241
+ name: Cosine Precision@1
242
+ - type: cosine_precision@3
243
+ value: 0.08960176991150441
244
+ name: Cosine Precision@3
245
+ - type: cosine_precision@5
246
+ value: 0.06969026548672566
247
+ name: Cosine Precision@5
248
+ - type: cosine_precision@10
249
+ value: 0.049115044247787606
250
+ name: Cosine Precision@10
251
+ - type: cosine_recall@1
252
+ value: 0.14491150442477876
253
+ name: Cosine Recall@1
254
+ - type: cosine_recall@3
255
+ value: 0.2688053097345133
256
+ name: Cosine Recall@3
257
+ - type: cosine_recall@5
258
+ value: 0.34845132743362833
259
+ name: Cosine Recall@5
260
+ - type: cosine_recall@10
261
+ value: 0.4911504424778761
262
+ name: Cosine Recall@10
263
+ - type: cosine_ndcg@10
264
+ value: 0.2942530832557106
265
+ name: Cosine Ndcg@10
266
+ - type: cosine_mrr@10
267
+ value: 0.2342999367888746
268
+ name: Cosine Mrr@10
269
+ - type: cosine_map@100
270
+ value: 0.2580055991240585
271
+ name: Cosine Map@100
272
+ - task:
273
+ type: information-retrieval
274
+ name: Information Retrieval
275
+ dataset:
276
+ name: dim 128
277
+ type: dim_128
278
+ metrics:
279
+ - type: cosine_accuracy@1
280
+ value: 0.14712389380530974
281
+ name: Cosine Accuracy@1
282
+ - type: cosine_accuracy@3
283
+ value: 0.2665929203539823
284
+ name: Cosine Accuracy@3
285
+ - type: cosine_accuracy@5
286
+ value: 0.34623893805309736
287
+ name: Cosine Accuracy@5
288
+ - type: cosine_accuracy@10
289
+ value: 0.4944690265486726
290
+ name: Cosine Accuracy@10
291
+ - type: cosine_precision@1
292
+ value: 0.14712389380530974
293
+ name: Cosine Precision@1
294
+ - type: cosine_precision@3
295
+ value: 0.08886430678466076
296
+ name: Cosine Precision@3
297
+ - type: cosine_precision@5
298
+ value: 0.06924778761061946
299
+ name: Cosine Precision@5
300
+ - type: cosine_precision@10
301
+ value: 0.04944690265486726
302
+ name: Cosine Precision@10
303
+ - type: cosine_recall@1
304
+ value: 0.14712389380530974
305
+ name: Cosine Recall@1
306
+ - type: cosine_recall@3
307
+ value: 0.2665929203539823
308
+ name: Cosine Recall@3
309
+ - type: cosine_recall@5
310
+ value: 0.34623893805309736
311
+ name: Cosine Recall@5
312
+ - type: cosine_recall@10
313
+ value: 0.4944690265486726
314
+ name: Cosine Recall@10
315
+ - type: cosine_ndcg@10
316
+ value: 0.2963702071144291
317
+ name: Cosine Ndcg@10
318
+ - type: cosine_mrr@10
319
+ value: 0.2362221695462843
320
+ name: Cosine Mrr@10
321
+ - type: cosine_map@100
322
+ value: 0.25976571809408944
323
+ name: Cosine Map@100
324
+ - task:
325
+ type: information-retrieval
326
+ name: Information Retrieval
327
+ dataset:
328
+ name: dim 64
329
+ type: dim_64
330
+ metrics:
331
+ - type: cosine_accuracy@1
332
+ value: 0.14601769911504425
333
+ name: Cosine Accuracy@1
334
+ - type: cosine_accuracy@3
335
+ value: 0.26991150442477874
336
+ name: Cosine Accuracy@3
337
+ - type: cosine_accuracy@5
338
+ value: 0.3473451327433628
339
+ name: Cosine Accuracy@5
340
+ - type: cosine_accuracy@10
341
+ value: 0.497787610619469
342
+ name: Cosine Accuracy@10
343
+ - type: cosine_precision@1
344
+ value: 0.14601769911504425
345
+ name: Cosine Precision@1
346
+ - type: cosine_precision@3
347
+ value: 0.08997050147492625
348
+ name: Cosine Precision@3
349
+ - type: cosine_precision@5
350
+ value: 0.06946902654867257
351
+ name: Cosine Precision@5
352
+ - type: cosine_precision@10
353
+ value: 0.049778761061946904
354
+ name: Cosine Precision@10
355
+ - type: cosine_recall@1
356
+ value: 0.14601769911504425
357
+ name: Cosine Recall@1
358
+ - type: cosine_recall@3
359
+ value: 0.26991150442477874
360
+ name: Cosine Recall@3
361
+ - type: cosine_recall@5
362
+ value: 0.3473451327433628
363
+ name: Cosine Recall@5
364
+ - type: cosine_recall@10
365
+ value: 0.497787610619469
366
+ name: Cosine Recall@10
367
+ - type: cosine_ndcg@10
368
+ value: 0.29684044099735196
369
+ name: Cosine Ndcg@10
370
+ - type: cosine_mrr@10
371
+ value: 0.23588767734232302
372
+ name: Cosine Mrr@10
373
+ - type: cosine_map@100
374
+ value: 0.2592174386566743
375
+ name: Cosine Map@100
376
+ ---
377
+
378
+ # BGE m3 for Ostap project
379
+
380
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
381
+
382
+ ## Model Details
383
+
384
+ ### Model Description
385
+ - **Model Type:** Sentence Transformer
386
+ - **Base model:** [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3) <!-- at revision 5617a9f61b028005a4858fdac845db406aefb181 -->
387
+ - **Maximum Sequence Length:** 8192 tokens
388
+ - **Output Dimensionality:** 1024 dimensions
389
+ - **Similarity Function:** Cosine Similarity
390
+ <!-- - **Training Dataset:** Unknown -->
391
+ - **Language:** ru
392
+ - **License:** apache-2.0
393
+
394
+ ### Model Sources
395
+
396
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
397
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
398
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
399
+
400
+ ### Full Model Architecture
401
+
402
+ ```
403
+ SentenceTransformer(
404
+ (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
405
+ (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
406
+ (2): Normalize()
407
+ )
408
+ ```
409
+
410
+ ## Usage
411
+
412
+ ### Direct Usage (Sentence Transformers)
413
+
414
+ First install the Sentence Transformers library:
415
+
416
+ ```bash
417
+ pip install -U sentence-transformers
418
+ ```
419
+
420
+ Then you can load this model and run inference.
421
+ ```python
422
+ from sentence_transformers import SentenceTransformer
423
+
424
+ # Download from the 🤗 Hub
425
+ model = SentenceTransformer("fitlemon/bge-m3-ru-ostap")
426
+ # Run inference
427
+ sentences = [
428
+ 'Какой у тебя любимый фильм?',
429
+ 'У нас хотя и не Париж, но кино у нас всегда с интригой!',
430
+ 'Фильм? Знойная женщина, мечта поэта — вот мой любимый сюжет!',
431
+ ]
432
+ embeddings = model.encode(sentences)
433
+ print(embeddings.shape)
434
+ # [3, 1024]
435
+
436
+ # Get the similarity scores for the embeddings
437
+ similarities = model.similarity(embeddings, embeddings)
438
+ print(similarities.shape)
439
+ # [3, 3]
440
+ ```
441
+
442
+ <!--
443
+ ### Direct Usage (Transformers)
444
+
445
+ <details><summary>Click to see the direct usage in Transformers</summary>
446
+
447
+ </details>
448
+ -->
449
+
450
+ <!--
451
+ ### Downstream Usage (Sentence Transformers)
452
+
453
+ You can finetune this model on your own dataset.
454
+
455
+ <details><summary>Click to expand</summary>
456
+
457
+ </details>
458
+ -->
459
+
460
+ <!--
461
+ ### Out-of-Scope Use
462
+
463
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
464
+ -->
465
+
466
+ ## Evaluation
467
+
468
+ ### Metrics
469
+
470
+ #### Information Retrieval
471
+
472
+ * Datasets: `dim_1024`, `dim_768`, `dim_512`, `dim_256`, `dim_128` and `dim_64`
473
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
474
+
475
+ | Metric | dim_1024 | dim_768 | dim_512 | dim_256 | dim_128 | dim_64 |
476
+ |:--------------------|:-----------|:-----------|:-----------|:-----------|:-----------|:-----------|
477
+ | cosine_accuracy@1 | 0.1493 | 0.146 | 0.1482 | 0.1449 | 0.1471 | 0.146 |
478
+ | cosine_accuracy@3 | 0.2666 | 0.2655 | 0.2655 | 0.2688 | 0.2666 | 0.2699 |
479
+ | cosine_accuracy@5 | 0.3429 | 0.3473 | 0.3451 | 0.3485 | 0.3462 | 0.3473 |
480
+ | cosine_accuracy@10 | 0.4856 | 0.4867 | 0.4945 | 0.4912 | 0.4945 | 0.4978 |
481
+ | cosine_precision@1 | 0.1493 | 0.146 | 0.1482 | 0.1449 | 0.1471 | 0.146 |
482
+ | cosine_precision@3 | 0.0889 | 0.0885 | 0.0885 | 0.0896 | 0.0889 | 0.09 |
483
+ | cosine_precision@5 | 0.0686 | 0.0695 | 0.069 | 0.0697 | 0.0692 | 0.0695 |
484
+ | cosine_precision@10 | 0.0486 | 0.0487 | 0.0494 | 0.0491 | 0.0494 | 0.0498 |
485
+ | cosine_recall@1 | 0.1493 | 0.146 | 0.1482 | 0.1449 | 0.1471 | 0.146 |
486
+ | cosine_recall@3 | 0.2666 | 0.2655 | 0.2655 | 0.2688 | 0.2666 | 0.2699 |
487
+ | cosine_recall@5 | 0.3429 | 0.3473 | 0.3451 | 0.3485 | 0.3462 | 0.3473 |
488
+ | cosine_recall@10 | 0.4856 | 0.4867 | 0.4945 | 0.4912 | 0.4945 | 0.4978 |
489
+ | **cosine_ndcg@10** | **0.2943** | **0.2932** | **0.2966** | **0.2943** | **0.2964** | **0.2968** |
490
+ | cosine_mrr@10 | 0.2362 | 0.2344 | 0.2365 | 0.2343 | 0.2362 | 0.2359 |
491
+ | cosine_map@100 | 0.2601 | 0.2582 | 0.2598 | 0.258 | 0.2598 | 0.2592 |
492
+
493
+ <!--
494
+ ## Bias, Risks and Limitations
495
+
496
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
497
+ -->
498
+
499
+ <!--
500
+ ### Recommendations
501
+
502
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
503
+ -->
504
+
505
+ ## Training Details
506
+
507
+ ### Training Dataset
508
+
509
+ #### Unnamed Dataset
510
+
511
+ * Size: 904 training samples
512
+ * Columns: <code>question</code> and <code>answer</code>
513
+ * Approximate statistics based on the first 904 samples:
514
+ | | question | answer |
515
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
516
+ | type | string | string |
517
+ | details | <ul><li>min: 6 tokens</li><li>mean: 10.16 tokens</li><li>max: 14 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 20.91 tokens</li><li>max: 43 tokens</li></ul> |
518
+ * Samples:
519
+ | question | answer |
520
+ |:-----------------------------------------------|:------------------------------------------------------------------------------------|
521
+ | <code>Как ты проводишь свободное время?</code> | <code>Любителя бьют, а время — не ждет!</code> |
522
+ | <code>Какой у тебя план на будущее?</code> | <code>План на будущее? Широкие массы миллиардеров уже составили его за меня.</code> |
523
+ | <code>Какой у тебя любимый цвет?</code> | <code>Вы мне в конце концов не художник, не дизайнер и не стилист.</code> |
524
+ * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
525
+ ```json
526
+ {
527
+ "loss": "MultipleNegativesRankingLoss",
528
+ "matryoshka_dims": [
529
+ 1024,
530
+ 768,
531
+ 512,
532
+ 256,
533
+ 128,
534
+ 64
535
+ ],
536
+ "matryoshka_weights": [
537
+ 1,
538
+ 1,
539
+ 1,
540
+ 1,
541
+ 1,
542
+ 1
543
+ ],
544
+ "n_dims_per_step": -1
545
+ }
546
+ ```
547
+
548
+ ### Training Hyperparameters
549
+ #### Non-Default Hyperparameters
550
+
551
+ - `eval_strategy`: epoch
552
+ - `learning_rate`: 2e-05
553
+ - `num_train_epochs`: 4
554
+ - `lr_scheduler_type`: cosine
555
+ - `warmup_ratio`: 0.1
556
+ - `fp16`: True
557
+ - `tf32`: False
558
+ - `load_best_model_at_end`: True
559
+ - `optim`: adamw_torch_fused
560
+ - `batch_sampler`: no_duplicates
561
+
562
+ #### All Hyperparameters
563
+ <details><summary>Click to expand</summary>
564
+
565
+ - `overwrite_output_dir`: False
566
+ - `do_predict`: False
567
+ - `eval_strategy`: epoch
568
+ - `prediction_loss_only`: True
569
+ - `per_device_train_batch_size`: 8
570
+ - `per_device_eval_batch_size`: 8
571
+ - `per_gpu_train_batch_size`: None
572
+ - `per_gpu_eval_batch_size`: None
573
+ - `gradient_accumulation_steps`: 1
574
+ - `eval_accumulation_steps`: None
575
+ - `torch_empty_cache_steps`: None
576
+ - `learning_rate`: 2e-05
577
+ - `weight_decay`: 0.0
578
+ - `adam_beta1`: 0.9
579
+ - `adam_beta2`: 0.999
580
+ - `adam_epsilon`: 1e-08
581
+ - `max_grad_norm`: 1.0
582
+ - `num_train_epochs`: 4
583
+ - `max_steps`: -1
584
+ - `lr_scheduler_type`: cosine
585
+ - `lr_scheduler_kwargs`: {}
586
+ - `warmup_ratio`: 0.1
587
+ - `warmup_steps`: 0
588
+ - `log_level`: passive
589
+ - `log_level_replica`: warning
590
+ - `log_on_each_node`: True
591
+ - `logging_nan_inf_filter`: True
592
+ - `save_safetensors`: True
593
+ - `save_on_each_node`: False
594
+ - `save_only_model`: False
595
+ - `restore_callback_states_from_checkpoint`: False
596
+ - `no_cuda`: False
597
+ - `use_cpu`: False
598
+ - `use_mps_device`: False
599
+ - `seed`: 42
600
+ - `data_seed`: None
601
+ - `jit_mode_eval`: False
602
+ - `use_ipex`: False
603
+ - `bf16`: False
604
+ - `fp16`: True
605
+ - `fp16_opt_level`: O1
606
+ - `half_precision_backend`: auto
607
+ - `bf16_full_eval`: False
608
+ - `fp16_full_eval`: False
609
+ - `tf32`: False
610
+ - `local_rank`: 0
611
+ - `ddp_backend`: None
612
+ - `tpu_num_cores`: None
613
+ - `tpu_metrics_debug`: False
614
+ - `debug`: []
615
+ - `dataloader_drop_last`: False
616
+ - `dataloader_num_workers`: 0
617
+ - `dataloader_prefetch_factor`: None
618
+ - `past_index`: -1
619
+ - `disable_tqdm`: False
620
+ - `remove_unused_columns`: True
621
+ - `label_names`: None
622
+ - `load_best_model_at_end`: True
623
+ - `ignore_data_skip`: False
624
+ - `fsdp`: []
625
+ - `fsdp_min_num_params`: 0
626
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
627
+ - `fsdp_transformer_layer_cls_to_wrap`: None
628
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
629
+ - `deepspeed`: None
630
+ - `label_smoothing_factor`: 0.0
631
+ - `optim`: adamw_torch_fused
632
+ - `optim_args`: None
633
+ - `adafactor`: False
634
+ - `group_by_length`: False
635
+ - `length_column_name`: length
636
+ - `ddp_find_unused_parameters`: None
637
+ - `ddp_bucket_cap_mb`: None
638
+ - `ddp_broadcast_buffers`: False
639
+ - `dataloader_pin_memory`: True
640
+ - `dataloader_persistent_workers`: False
641
+ - `skip_memory_metrics`: True
642
+ - `use_legacy_prediction_loop`: False
643
+ - `push_to_hub`: False
644
+ - `resume_from_checkpoint`: None
645
+ - `hub_model_id`: None
646
+ - `hub_strategy`: every_save
647
+ - `hub_private_repo`: None
648
+ - `hub_always_push`: False
649
+ - `gradient_checkpointing`: False
650
+ - `gradient_checkpointing_kwargs`: None
651
+ - `include_inputs_for_metrics`: False
652
+ - `include_for_metrics`: []
653
+ - `eval_do_concat_batches`: True
654
+ - `fp16_backend`: auto
655
+ - `push_to_hub_model_id`: None
656
+ - `push_to_hub_organization`: None
657
+ - `mp_parameters`:
658
+ - `auto_find_batch_size`: False
659
+ - `full_determinism`: False
660
+ - `torchdynamo`: None
661
+ - `ray_scope`: last
662
+ - `ddp_timeout`: 1800
663
+ - `torch_compile`: False
664
+ - `torch_compile_backend`: None
665
+ - `torch_compile_mode`: None
666
+ - `dispatch_batches`: None
667
+ - `split_batches`: None
668
+ - `include_tokens_per_second`: False
669
+ - `include_num_input_tokens_seen`: False
670
+ - `neftune_noise_alpha`: None
671
+ - `optim_target_modules`: None
672
+ - `batch_eval_metrics`: False
673
+ - `eval_on_start`: False
674
+ - `use_liger_kernel`: False
675
+ - `eval_use_gather_object`: False
676
+ - `average_tokens_across_devices`: False
677
+ - `prompts`: None
678
+ - `batch_sampler`: no_duplicates
679
+ - `multi_dataset_batch_sampler`: proportional
680
+
681
+ </details>
682
+
683
+ ### Training Logs
684
+ | Epoch | Step | Training Loss | dim_1024_cosine_ndcg@10 | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 |
685
+ |:----------:|:-------:|:-------------:|:-----------------------:|:----------------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|
686
+ | 0.0885 | 10 | 6.8669 | - | - | - | - | - | - |
687
+ | 0.1770 | 20 | 4.9384 | - | - | - | - | - | - |
688
+ | 0.2655 | 30 | 3.1491 | - | - | - | - | - | - |
689
+ | 0.3540 | 40 | 2.5456 | - | - | - | - | - | - |
690
+ | 0.4425 | 50 | 3.6943 | - | - | - | - | - | - |
691
+ | 0.5310 | 60 | 1.8947 | - | - | - | - | - | - |
692
+ | 0.6195 | 70 | 2.1762 | - | - | - | - | - | - |
693
+ | 0.7080 | 80 | 1.9446 | - | - | - | - | - | - |
694
+ | 0.7965 | 90 | 1.5278 | - | - | - | - | - | - |
695
+ | 0.8850 | 100 | 2.0417 | - | - | - | - | - | - |
696
+ | 0.9735 | 110 | 3.7804 | - | - | - | - | - | - |
697
+ | 1.0 | 113 | - | 0.2751 | 0.2747 | 0.2761 | 0.2786 | 0.2764 | 0.2715 |
698
+ | 1.0619 | 120 | 1.9706 | - | - | - | - | - | - |
699
+ | 1.1504 | 130 | 1.7073 | - | - | - | - | - | - |
700
+ | 1.2389 | 140 | 1.3279 | - | - | - | - | - | - |
701
+ | 1.3274 | 150 | 1.2724 | - | - | - | - | - | - |
702
+ | 1.4159 | 160 | 2.4455 | - | - | - | - | - | - |
703
+ | 1.5044 | 170 | 0.5255 | - | - | - | - | - | - |
704
+ | 1.5929 | 180 | 2.5764 | - | - | - | - | - | - |
705
+ | 1.6814 | 190 | 1.56 | - | - | - | - | - | - |
706
+ | 1.7699 | 200 | 0.9105 | - | - | - | - | - | - |
707
+ | 1.8584 | 210 | 1.9859 | - | - | - | - | - | - |
708
+ | 1.9469 | 220 | 1.6355 | - | - | - | - | - | - |
709
+ | 2.0088 | 227 | - | 0.2837 | 0.2852 | 0.2880 | 0.2899 | 0.2926 | 0.2902 |
710
+ | 2.0265 | 230 | 0.6769 | - | - | - | - | - | - |
711
+ | 2.1150 | 240 | 0.764 | - | - | - | - | - | - |
712
+ | 2.2035 | 250 | 1.0598 | - | - | - | - | - | - |
713
+ | 2.2920 | 260 | 0.9267 | - | - | - | - | - | - |
714
+ | 2.3805 | 270 | 0.9687 | - | - | - | - | - | - |
715
+ | 2.4690 | 280 | 0.7875 | - | - | - | - | - | - |
716
+ | 2.5575 | 290 | 1.3853 | - | - | - | - | - | - |
717
+ | 2.6460 | 300 | 0.8114 | - | - | - | - | - | - |
718
+ | 2.7345 | 310 | 1.6069 | - | - | - | - | - | - |
719
+ | 2.8230 | 320 | 0.8149 | - | - | - | - | - | - |
720
+ | 2.9115 | 330 | 0.8858 | - | - | - | - | - | - |
721
+ | 3.0 | 340 | 0.7858 | 0.2920 | 0.2917 | 0.2929 | 0.2927 | 0.2967 | 0.2969 |
722
+ | 3.0885 | 350 | 0.5889 | - | - | - | - | - | - |
723
+ | 3.1770 | 360 | 0.3542 | - | - | - | - | - | - |
724
+ | 3.2655 | 370 | 0.5868 | - | - | - | - | - | - |
725
+ | 3.3540 | 380 | 0.4988 | - | - | - | - | - | - |
726
+ | 3.4425 | 390 | 0.4577 | - | - | - | - | - | - |
727
+ | 3.5310 | 400 | 0.4735 | - | - | - | - | - | - |
728
+ | 3.6195 | 410 | 1.2588 | - | - | - | - | - | - |
729
+ | 3.7080 | 420 | 0.6346 | - | - | - | - | - | - |
730
+ | 3.7965 | 430 | 0.3013 | - | - | - | - | - | - |
731
+ | 3.8850 | 440 | 0.6734 | - | - | - | - | - | - |
732
+ | 3.9735 | 450 | 0.3469 | - | - | - | - | - | - |
733
+ | **3.9912** | **452** | **-** | **0.2943** | **0.2932** | **0.2966** | **0.2943** | **0.2964** | **0.2968** |
734
+
735
+ * The bold row denotes the saved checkpoint.
736
+
737
+ ### Framework Versions
738
+ - Python: 3.11.11
739
+ - Sentence Transformers: 3.4.1
740
+ - Transformers: 4.48.3
741
+ - PyTorch: 2.5.1+cu124
742
+ - Accelerate: 1.3.0
743
+ - Datasets: 3.3.2
744
+ - Tokenizers: 0.21.0
745
+
746
+ ## Citation
747
+
748
+ ### BibTeX
749
+
750
+ #### Sentence Transformers
751
+ ```bibtex
752
+ @inproceedings{reimers-2019-sentence-bert,
753
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
754
+ author = "Reimers, Nils and Gurevych, Iryna",
755
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
756
+ month = "11",
757
+ year = "2019",
758
+ publisher = "Association for Computational Linguistics",
759
+ url = "https://arxiv.org/abs/1908.10084",
760
+ }
761
+ ```
762
+
763
+ #### MatryoshkaLoss
764
+ ```bibtex
765
+ @misc{kusupati2024matryoshka,
766
+ title={Matryoshka Representation Learning},
767
+ author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
768
+ year={2024},
769
+ eprint={2205.13147},
770
+ archivePrefix={arXiv},
771
+ primaryClass={cs.LG}
772
+ }
773
+ ```
774
+
775
+ #### MultipleNegativesRankingLoss
776
+ ```bibtex
777
+ @misc{henderson2017efficient,
778
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
779
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
780
+ year={2017},
781
+ eprint={1705.00652},
782
+ archivePrefix={arXiv},
783
+ primaryClass={cs.CL}
784
+ }
785
+ ```
786
+
787
+ <!--
788
+ ## Glossary
789
+
790
+ *Clearly define terms in order to be accessible across audiences.*
791
+ -->
792
+
793
+ <!--
794
+ ## Model Card Authors
795
+
796
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
797
+ -->
798
+
799
+ <!--
800
+ ## Model Card Contact
801
+
802
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
803
+ -->
config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "BAAI/bge-m3",
3
+ "architectures": [
4
+ "XLMRobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 1024,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 4096,
15
+ "layer_norm_eps": 1e-05,
16
+ "max_position_embeddings": 8194,
17
+ "model_type": "xlm-roberta",
18
+ "num_attention_heads": 16,
19
+ "num_hidden_layers": 24,
20
+ "output_past": true,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "torch_dtype": "float32",
24
+ "transformers_version": "4.48.3",
25
+ "type_vocab_size": 1,
26
+ "use_cache": true,
27
+ "vocab_size": 250002
28
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.4.1",
4
+ "transformers": "4.48.3",
5
+ "pytorch": "2.5.1+cu124"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:923a8e25262a389b428fca10c01f7e05c4371e0c4301694a5147203de8d340a3
3
+ size 2271064456
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 8192,
3
+ "do_lower_case": false
4
+ }
sentencepiece.bpe.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
3
+ size 5069051
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e4f7e21bec3fb0044ca0bb2d50eb5d4d8c596273c422baef84466d2c73748b9c
3
+ size 17083053
tokenizer_config.json ADDED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "eos_token": "</s>",
48
+ "extra_special_tokens": {},
49
+ "mask_token": "<mask>",
50
+ "model_max_length": 8192,
51
+ "pad_token": "<pad>",
52
+ "sep_token": "</s>",
53
+ "sp_model_kwargs": {},
54
+ "tokenizer_class": "XLMRobertaTokenizer",
55
+ "unk_token": "<unk>"
56
+ }