Add SetFit ABSA model
Browse files- 1_Pooling/config.json +7 -0
- README.md +365 -0
- config.json +47 -0
- config_sentence_transformers.json +7 -0
- config_setfit.json +9 -0
- model.safetensors +3 -0
- model_head.pkl +3 -0
- modules.json +14 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +37 -0
- tokenizer.json +0 -0
- tokenizer_config.json +64 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false
|
7 |
+
}
|
README.md
ADDED
@@ -0,0 +1,365 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: setfit
|
3 |
+
tags:
|
4 |
+
- setfit
|
5 |
+
- absa
|
6 |
+
- sentence-transformers
|
7 |
+
- text-classification
|
8 |
+
- generated_from_setfit_trainer
|
9 |
+
metrics:
|
10 |
+
- accuracy
|
11 |
+
widget:
|
12 |
+
- text: suasana:suasana ramai tapi suasana seperti bistro getaran tipe bistro
|
13 |
+
- text: makanan:dua kali terakhir saya memesan dari sini, makanan saya sangat pedas
|
14 |
+
sehingga saya hampir tidak bisa memakan, dan bumbu tersebut menghilangkan rasa
|
15 |
+
hidangan.
|
16 |
+
- text: tempat:makan di tempat, suasana menghemat, tetapi di meja anda, ini adalah
|
17 |
+
pengalaman yang sangat mengecewakan.
|
18 |
+
- text: suasana:mungkin agak ramai di akhir pekan, tapi suasana bagus dan ini adalah
|
19 |
+
makanan prancis terbaik yang bisa anda temukan di area tersebut penuh sesak
|
20 |
+
- text: porsi:mereka disajikan dengan hidangan pembuka gratis dan porsi cocok untuk
|
21 |
+
makan siang melayani
|
22 |
+
pipeline_tag: text-classification
|
23 |
+
inference: false
|
24 |
+
base_model: firqaaa/indo-sentence-bert-base
|
25 |
+
model-index:
|
26 |
+
- name: SetFit Aspect Model with firqaaa/indo-sentence-bert-base
|
27 |
+
results:
|
28 |
+
- task:
|
29 |
+
type: text-classification
|
30 |
+
name: Text Classification
|
31 |
+
dataset:
|
32 |
+
name: Unknown
|
33 |
+
type: unknown
|
34 |
+
split: test
|
35 |
+
metrics:
|
36 |
+
- type: accuracy
|
37 |
+
value: 0.8956953642384106
|
38 |
+
name: Accuracy
|
39 |
+
---
|
40 |
+
|
41 |
+
# SetFit Aspect Model with firqaaa/indo-sentence-bert-base
|
42 |
+
|
43 |
+
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Aspect Based Sentiment Analysis (ABSA). This SetFit model uses [firqaaa/indo-sentence-bert-base](https://huggingface.co/firqaaa/indo-sentence-bert-base) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. In particular, this model is in charge of filtering aspect span candidates.
|
44 |
+
|
45 |
+
The model has been trained using an efficient few-shot learning technique that involves:
|
46 |
+
|
47 |
+
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
|
48 |
+
2. Training a classification head with features from the fine-tuned Sentence Transformer.
|
49 |
+
|
50 |
+
This model was trained within the context of a larger system for ABSA, which looks like so:
|
51 |
+
|
52 |
+
1. Use a spaCy model to select possible aspect span candidates.
|
53 |
+
2. **Use this SetFit model to filter these possible aspect span candidates.**
|
54 |
+
3. Use a SetFit model to classify the filtered aspect span candidates.
|
55 |
+
|
56 |
+
## Model Details
|
57 |
+
|
58 |
+
### Model Description
|
59 |
+
- **Model Type:** SetFit
|
60 |
+
- **Sentence Transformer body:** [firqaaa/indo-sentence-bert-base](https://huggingface.co/firqaaa/indo-sentence-bert-base)
|
61 |
+
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
|
62 |
+
- **spaCy Model:** id_core_news_trf
|
63 |
+
- **SetFitABSA Aspect Model:** [firqaaa/indo-setfit-absa-sentence-bert-base-p1-restaurants-aspect](https://huggingface.co/firqaaa/indo-setfit-absa-sentence-bert-base-p1-restaurants-aspect)
|
64 |
+
- **SetFitABSA Polarity Model:** [firqaaa/indo-setfit-absa-sentence-bert-base-p1-restaurants-polarity](https://huggingface.co/firqaaa/indo-setfit-absa-sentence-bert-base-p1-restaurants-polarity)
|
65 |
+
- **Maximum Sequence Length:** 512 tokens
|
66 |
+
- **Number of Classes:** 2 classes
|
67 |
+
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
|
68 |
+
<!-- - **Language:** Unknown -->
|
69 |
+
<!-- - **License:** Unknown -->
|
70 |
+
|
71 |
+
### Model Sources
|
72 |
+
|
73 |
+
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
|
74 |
+
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
|
75 |
+
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
|
76 |
+
|
77 |
+
### Model Labels
|
78 |
+
| Label | Examples |
|
79 |
+
|:----------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
80 |
+
| aspect | <ul><li>'reservasi:restoran ini sangat kecil sehingga reservasi adalah suatu keharusan.'</li><li>'nyonya rumah:di sebelah kanan saya, nyo rumah berdiri di dekat seorang busboy dan mendesiskan rapido, rapido ketika dia mencoba membersihkan dan mengatur ulang meja untuk enam orang nyonya rumah'</li><li>'busboy:di sebelah kanan saya, nyo rumah berdiri di dekat seorang busboy dan mendesiskan rapido, rapido ketika dia mencoba membersihkan dan mengatur ulang meja untuk enam orang.'</li></ul> |
|
81 |
+
| no aspect | <ul><li>'restoran:restoran ini sangat kecil sehingga reservasi adalah suatu keharusan.'</li><li>'keharusan:restoran ini sangat kecil sehingga reservasi adalah suatu keharusan.'</li><li>'sebelah kanan:di sebelah kanan saya, nyo rumah berdiri di dekat seorang busboy dan mendesiskan rapido, rapido ketika dia mencoba membersihkan dan mengatur ulang meja untuk enam orang nyonya rumah'</li></ul> |
|
82 |
+
|
83 |
+
## Evaluation
|
84 |
+
|
85 |
+
### Metrics
|
86 |
+
| Label | Accuracy |
|
87 |
+
|:--------|:---------|
|
88 |
+
| **all** | 0.8957 |
|
89 |
+
|
90 |
+
## Uses
|
91 |
+
|
92 |
+
### Direct Use for Inference
|
93 |
+
|
94 |
+
First install the SetFit library:
|
95 |
+
|
96 |
+
```bash
|
97 |
+
pip install setfit
|
98 |
+
```
|
99 |
+
|
100 |
+
Then you can load this model and run inference.
|
101 |
+
|
102 |
+
```python
|
103 |
+
from setfit import AbsaModel
|
104 |
+
|
105 |
+
# Download from the 🤗 Hub
|
106 |
+
model = AbsaModel.from_pretrained(
|
107 |
+
"firqaaa/indo-setfit-absa-sentence-bert-base-p1-restaurants-aspect",
|
108 |
+
"firqaaa/indo-setfit-absa-sentence-bert-base-p1-restaurants-polarity",
|
109 |
+
)
|
110 |
+
# Run inference
|
111 |
+
preds = model("The food was great, but the venue is just way too busy.")
|
112 |
+
```
|
113 |
+
|
114 |
+
<!--
|
115 |
+
### Downstream Use
|
116 |
+
|
117 |
+
*List how someone could finetune this model on their own dataset.*
|
118 |
+
-->
|
119 |
+
|
120 |
+
<!--
|
121 |
+
### Out-of-Scope Use
|
122 |
+
|
123 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
124 |
+
-->
|
125 |
+
|
126 |
+
<!--
|
127 |
+
## Bias, Risks and Limitations
|
128 |
+
|
129 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
130 |
+
-->
|
131 |
+
|
132 |
+
<!--
|
133 |
+
### Recommendations
|
134 |
+
|
135 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
136 |
+
-->
|
137 |
+
|
138 |
+
## Training Details
|
139 |
+
|
140 |
+
### Training Set Metrics
|
141 |
+
| Training set | Min | Median | Max |
|
142 |
+
|:-------------|:----|:--------|:----|
|
143 |
+
| Word count | 2 | 20.1601 | 59 |
|
144 |
+
|
145 |
+
| Label | Training Sample Count |
|
146 |
+
|:----------|:----------------------|
|
147 |
+
| no aspect | 2123 |
|
148 |
+
| aspect | 1076 |
|
149 |
+
|
150 |
+
### Training Hyperparameters
|
151 |
+
- batch_size: (32, 32)
|
152 |
+
- num_epochs: (1, 1)
|
153 |
+
- max_steps: -1
|
154 |
+
- sampling_strategy: oversampling
|
155 |
+
- body_learning_rate: (2e-05, 1e-05)
|
156 |
+
- head_learning_rate: 0.01
|
157 |
+
- loss: CosineSimilarityLoss
|
158 |
+
- distance_metric: cosine_distance
|
159 |
+
- margin: 0.25
|
160 |
+
- end_to_end: False
|
161 |
+
- use_amp: True
|
162 |
+
- warmup_proportion: 0.1
|
163 |
+
- seed: 42
|
164 |
+
- eval_max_steps: -1
|
165 |
+
- load_best_model_at_end: True
|
166 |
+
|
167 |
+
### Training Results
|
168 |
+
| Epoch | Step | Training Loss | Validation Loss |
|
169 |
+
|:----------:|:--------:|:-------------:|:---------------:|
|
170 |
+
| 0.0000 | 1 | 0.318 | - |
|
171 |
+
| 0.0003 | 50 | 0.285 | - |
|
172 |
+
| 0.0006 | 100 | 0.2917 | - |
|
173 |
+
| 0.0008 | 150 | 0.3018 | - |
|
174 |
+
| 0.0011 | 200 | 0.2513 | - |
|
175 |
+
| 0.0014 | 250 | 0.2847 | - |
|
176 |
+
| 0.0017 | 300 | 0.227 | - |
|
177 |
+
| 0.0020 | 350 | 0.2601 | - |
|
178 |
+
| 0.0023 | 400 | 0.241 | - |
|
179 |
+
| 0.0025 | 450 | 0.2765 | - |
|
180 |
+
| 0.0028 | 500 | 0.2799 | 0.2687 |
|
181 |
+
| 0.0031 | 550 | 0.2872 | - |
|
182 |
+
| 0.0034 | 600 | 0.2723 | - |
|
183 |
+
| 0.0037 | 650 | 0.2297 | - |
|
184 |
+
| 0.0040 | 700 | 0.2448 | - |
|
185 |
+
| 0.0042 | 750 | 0.3296 | - |
|
186 |
+
| 0.0045 | 800 | 0.2564 | - |
|
187 |
+
| 0.0048 | 850 | 0.2406 | - |
|
188 |
+
| 0.0051 | 900 | 0.2776 | - |
|
189 |
+
| 0.0054 | 950 | 0.246 | - |
|
190 |
+
| 0.0056 | 1000 | 0.2801 | 0.2589 |
|
191 |
+
| 0.0059 | 1050 | 0.2562 | - |
|
192 |
+
| 0.0062 | 1100 | 0.2639 | - |
|
193 |
+
| 0.0065 | 1150 | 0.2322 | - |
|
194 |
+
| 0.0068 | 1200 | 0.275 | - |
|
195 |
+
| 0.0071 | 1250 | 0.2568 | - |
|
196 |
+
| 0.0073 | 1300 | 0.2457 | - |
|
197 |
+
| 0.0076 | 1350 | 0.2367 | - |
|
198 |
+
| 0.0079 | 1400 | 0.2878 | - |
|
199 |
+
| 0.0082 | 1450 | 0.2297 | - |
|
200 |
+
| 0.0085 | 1500 | 0.2557 | 0.2506 |
|
201 |
+
| 0.0088 | 1550 | 0.241 | - |
|
202 |
+
| 0.0090 | 1600 | 0.252 | - |
|
203 |
+
| 0.0093 | 1650 | 0.2485 | - |
|
204 |
+
| 0.0096 | 1700 | 0.2562 | - |
|
205 |
+
| 0.0099 | 1750 | 0.2311 | - |
|
206 |
+
| 0.0102 | 1800 | 0.2222 | - |
|
207 |
+
| 0.0104 | 1850 | 0.212 | - |
|
208 |
+
| 0.0107 | 1900 | 0.2595 | - |
|
209 |
+
| 0.0110 | 1950 | 0.2293 | - |
|
210 |
+
| 0.0113 | 2000 | 0.1934 | 0.2393 |
|
211 |
+
| 0.0116 | 2050 | 0.2119 | - |
|
212 |
+
| 0.0119 | 2100 | 0.2109 | - |
|
213 |
+
| 0.0121 | 2150 | 0.1875 | - |
|
214 |
+
| 0.0124 | 2200 | 0.2096 | - |
|
215 |
+
| 0.0127 | 2250 | 0.1701 | - |
|
216 |
+
| 0.0130 | 2300 | 0.2227 | - |
|
217 |
+
| 0.0133 | 2350 | 0.1832 | - |
|
218 |
+
| 0.0135 | 2400 | 0.1838 | - |
|
219 |
+
| 0.0138 | 2450 | 0.1846 | - |
|
220 |
+
| 0.0141 | 2500 | 0.1452 | 0.186 |
|
221 |
+
| 0.0144 | 2550 | 0.1366 | - |
|
222 |
+
| 0.0147 | 2600 | 0.124 | - |
|
223 |
+
| 0.0150 | 2650 | 0.1385 | - |
|
224 |
+
| 0.0152 | 2700 | 0.0681 | - |
|
225 |
+
| 0.0155 | 2750 | 0.0811 | - |
|
226 |
+
| 0.0158 | 2800 | 0.0794 | - |
|
227 |
+
| 0.0161 | 2850 | 0.1466 | - |
|
228 |
+
| 0.0164 | 2900 | 0.0964 | - |
|
229 |
+
| 0.0167 | 2950 | 0.174 | - |
|
230 |
+
| 0.0169 | 3000 | 0.0116 | 0.1658 |
|
231 |
+
| 0.0172 | 3050 | 0.1171 | - |
|
232 |
+
| 0.0175 | 3100 | 0.0301 | - |
|
233 |
+
| 0.0178 | 3150 | 0.0568 | - |
|
234 |
+
| 0.0181 | 3200 | 0.0448 | - |
|
235 |
+
| 0.0183 | 3250 | 0.0353 | - |
|
236 |
+
| 0.0186 | 3300 | 0.0721 | - |
|
237 |
+
| 0.0189 | 3350 | 0.009 | - |
|
238 |
+
| 0.0192 | 3400 | 0.0367 | - |
|
239 |
+
| 0.0195 | 3450 | 0.0251 | - |
|
240 |
+
| 0.0198 | 3500 | 0.0323 | 0.1925 |
|
241 |
+
| 0.0200 | 3550 | 0.0286 | - |
|
242 |
+
| 0.0203 | 3600 | 0.0524 | - |
|
243 |
+
| 0.0206 | 3650 | 0.0404 | - |
|
244 |
+
| 0.0209 | 3700 | 0.0037 | - |
|
245 |
+
| 0.0212 | 3750 | 0.0365 | - |
|
246 |
+
| 0.0215 | 3800 | 0.0214 | - |
|
247 |
+
| 0.0217 | 3850 | 0.0769 | - |
|
248 |
+
| 0.0220 | 3900 | 0.0317 | - |
|
249 |
+
| 0.0223 | 3950 | 0.001 | - |
|
250 |
+
| 0.0226 | 4000 | 0.0115 | 0.1733 |
|
251 |
+
| 0.0229 | 4050 | 0.0553 | - |
|
252 |
+
| 0.0231 | 4100 | 0.0025 | - |
|
253 |
+
| 0.0234 | 4150 | 0.0023 | - |
|
254 |
+
| 0.0237 | 4200 | 0.0014 | - |
|
255 |
+
| 0.0240 | 4250 | 0.0306 | - |
|
256 |
+
| 0.0243 | 4300 | 0.0352 | - |
|
257 |
+
| 0.0246 | 4350 | 0.0009 | - |
|
258 |
+
| 0.0248 | 4400 | 0.0302 | - |
|
259 |
+
| 0.0251 | 4450 | 0.0026 | - |
|
260 |
+
| 0.0254 | 4500 | 0.0213 | 0.1793 |
|
261 |
+
| 0.0257 | 4550 | 0.0009 | - |
|
262 |
+
| 0.0260 | 4600 | 0.0315 | - |
|
263 |
+
| 0.0263 | 4650 | 0.0005 | - |
|
264 |
+
| 0.0265 | 4700 | 0.0005 | - |
|
265 |
+
| 0.0268 | 4750 | 0.0014 | - |
|
266 |
+
| 0.0271 | 4800 | 0.0503 | - |
|
267 |
+
| 0.0274 | 4850 | 0.0007 | - |
|
268 |
+
| 0.0277 | 4900 | 0.0012 | - |
|
269 |
+
| 0.0279 | 4950 | 0.001 | - |
|
270 |
+
| **0.0282** | **5000** | **0.0014** | **0.1525** |
|
271 |
+
| 0.0285 | 5050 | 0.0292 | - |
|
272 |
+
| 0.0288 | 5100 | 0.0004 | - |
|
273 |
+
| 0.0291 | 5150 | 0.0602 | - |
|
274 |
+
| 0.0294 | 5200 | 0.0292 | - |
|
275 |
+
| 0.0296 | 5250 | 0.0006 | - |
|
276 |
+
| 0.0299 | 5300 | 0.0009 | - |
|
277 |
+
| 0.0302 | 5350 | 0.0007 | - |
|
278 |
+
| 0.0305 | 5400 | 0.0823 | - |
|
279 |
+
| 0.0308 | 5450 | 0.0319 | - |
|
280 |
+
| 0.0311 | 5500 | 0.0005 | 0.1707 |
|
281 |
+
| 0.0313 | 5550 | 0.0003 | - |
|
282 |
+
| 0.0316 | 5600 | 0.0022 | - |
|
283 |
+
| 0.0319 | 5650 | 0.047 | - |
|
284 |
+
| 0.0322 | 5700 | 0.0299 | - |
|
285 |
+
| 0.0325 | 5750 | 0.0312 | - |
|
286 |
+
| 0.0327 | 5800 | 0.0004 | - |
|
287 |
+
| 0.0330 | 5850 | 0.0301 | - |
|
288 |
+
| 0.0333 | 5900 | 0.0002 | - |
|
289 |
+
| 0.0336 | 5950 | 0.1056 | - |
|
290 |
+
| 0.0339 | 6000 | 0.0345 | 0.1859 |
|
291 |
+
| 0.0342 | 6050 | 0.0005 | - |
|
292 |
+
| 0.0344 | 6100 | 0.0224 | - |
|
293 |
+
| 0.0347 | 6150 | 0.0004 | - |
|
294 |
+
| 0.0350 | 6200 | 0.0055 | - |
|
295 |
+
| 0.0353 | 6250 | 0.0307 | - |
|
296 |
+
| 0.0356 | 6300 | 0.0297 | - |
|
297 |
+
| 0.0358 | 6350 | 0.0627 | - |
|
298 |
+
| 0.0361 | 6400 | 0.0002 | - |
|
299 |
+
| 0.0364 | 6450 | 0.0216 | - |
|
300 |
+
| 0.0367 | 6500 | 0.001 | 0.1692 |
|
301 |
+
| 0.0370 | 6550 | 0.0046 | - |
|
302 |
+
| 0.0373 | 6600 | 0.031 | - |
|
303 |
+
| 0.0375 | 6650 | 0.0298 | - |
|
304 |
+
| 0.0378 | 6700 | 0.0003 | - |
|
305 |
+
| 0.0381 | 6750 | 0.0018 | - |
|
306 |
+
| 0.0384 | 6800 | 0.0002 | - |
|
307 |
+
| 0.0387 | 6850 | 0.0124 | - |
|
308 |
+
| 0.0390 | 6900 | 0.0002 | - |
|
309 |
+
| 0.0392 | 6950 | 0.0002 | - |
|
310 |
+
| 0.0395 | 7000 | 0.0002 | 0.1866 |
|
311 |
+
| 0.0398 | 7050 | 0.0001 | - |
|
312 |
+
| 0.0401 | 7100 | 0.0038 | - |
|
313 |
+
| 0.0404 | 7150 | 0.0296 | - |
|
314 |
+
| 0.0406 | 7200 | 0.0002 | - |
|
315 |
+
| 0.0409 | 7250 | 0.0032 | - |
|
316 |
+
| 0.0412 | 7300 | 0.001 | - |
|
317 |
+
| 0.0415 | 7350 | 0.0003 | - |
|
318 |
+
| 0.0418 | 7400 | 0.0369 | - |
|
319 |
+
| 0.0421 | 7450 | 0.0524 | - |
|
320 |
+
| 0.0423 | 7500 | 0.0002 | 0.1956 |
|
321 |
+
|
322 |
+
* The bold row denotes the saved checkpoint.
|
323 |
+
### Framework Versions
|
324 |
+
- Python: 3.10.13
|
325 |
+
- SetFit: 1.0.3
|
326 |
+
- Sentence Transformers: 2.2.2
|
327 |
+
- spaCy: 3.7.4
|
328 |
+
- Transformers: 4.36.2
|
329 |
+
- PyTorch: 2.1.2+cu121
|
330 |
+
- Datasets: 2.16.1
|
331 |
+
- Tokenizers: 0.15.0
|
332 |
+
|
333 |
+
## Citation
|
334 |
+
|
335 |
+
### BibTeX
|
336 |
+
```bibtex
|
337 |
+
@article{https://doi.org/10.48550/arxiv.2209.11055,
|
338 |
+
doi = {10.48550/ARXIV.2209.11055},
|
339 |
+
url = {https://arxiv.org/abs/2209.11055},
|
340 |
+
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
|
341 |
+
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
342 |
+
title = {Efficient Few-Shot Learning Without Prompts},
|
343 |
+
publisher = {arXiv},
|
344 |
+
year = {2022},
|
345 |
+
copyright = {Creative Commons Attribution 4.0 International}
|
346 |
+
}
|
347 |
+
```
|
348 |
+
|
349 |
+
<!--
|
350 |
+
## Glossary
|
351 |
+
|
352 |
+
*Clearly define terms in order to be accessible across audiences.*
|
353 |
+
-->
|
354 |
+
|
355 |
+
<!--
|
356 |
+
## Model Card Authors
|
357 |
+
|
358 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
359 |
+
-->
|
360 |
+
|
361 |
+
<!--
|
362 |
+
## Model Card Contact
|
363 |
+
|
364 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
365 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "models/step_5000/",
|
3 |
+
"_num_labels": 5,
|
4 |
+
"architectures": [
|
5 |
+
"BertModel"
|
6 |
+
],
|
7 |
+
"attention_probs_dropout_prob": 0.1,
|
8 |
+
"classifier_dropout": null,
|
9 |
+
"directionality": "bidi",
|
10 |
+
"hidden_act": "gelu",
|
11 |
+
"hidden_dropout_prob": 0.1,
|
12 |
+
"hidden_size": 768,
|
13 |
+
"id2label": {
|
14 |
+
"0": "LABEL_0",
|
15 |
+
"1": "LABEL_1",
|
16 |
+
"2": "LABEL_2",
|
17 |
+
"3": "LABEL_3",
|
18 |
+
"4": "LABEL_4"
|
19 |
+
},
|
20 |
+
"initializer_range": 0.02,
|
21 |
+
"intermediate_size": 3072,
|
22 |
+
"label2id": {
|
23 |
+
"LABEL_0": 0,
|
24 |
+
"LABEL_1": 1,
|
25 |
+
"LABEL_2": 2,
|
26 |
+
"LABEL_3": 3,
|
27 |
+
"LABEL_4": 4
|
28 |
+
},
|
29 |
+
"layer_norm_eps": 1e-12,
|
30 |
+
"max_position_embeddings": 512,
|
31 |
+
"model_type": "bert",
|
32 |
+
"num_attention_heads": 12,
|
33 |
+
"num_hidden_layers": 12,
|
34 |
+
"output_past": true,
|
35 |
+
"pad_token_id": 0,
|
36 |
+
"pooler_fc_size": 768,
|
37 |
+
"pooler_num_attention_heads": 12,
|
38 |
+
"pooler_num_fc_layers": 3,
|
39 |
+
"pooler_size_per_head": 128,
|
40 |
+
"pooler_type": "first_token_transform",
|
41 |
+
"position_embedding_type": "absolute",
|
42 |
+
"torch_dtype": "float32",
|
43 |
+
"transformers_version": "4.36.2",
|
44 |
+
"type_vocab_size": 2,
|
45 |
+
"use_cache": true,
|
46 |
+
"vocab_size": 50000
|
47 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "2.2.2",
|
4 |
+
"transformers": "4.20.1",
|
5 |
+
"pytorch": "1.11.0"
|
6 |
+
}
|
7 |
+
}
|
config_setfit.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"labels": [
|
3 |
+
"no aspect",
|
4 |
+
"aspect"
|
5 |
+
],
|
6 |
+
"spacy_model": "id_core_news_trf",
|
7 |
+
"span_context": 0,
|
8 |
+
"normalize_embeddings": false
|
9 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:750a46f1d07228a858c136ad0509ec2a6dd52997af062fd530d8734cf58f4791
|
3 |
+
size 497787752
|
model_head.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:011e8ba92930711af035d43595e1651e89bd77ceee14803306a69ccd46bcd5ce
|
3 |
+
size 6991
|
modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
}
|
14 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 512,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"mask_token": {
|
10 |
+
"content": "[MASK]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "[PAD]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"sep_token": {
|
24 |
+
"content": "[SEP]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"unk_token": {
|
31 |
+
"content": "[UNK]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
}
|
37 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"4": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"clean_up_tokenization_spaces": true,
|
45 |
+
"cls_token": "[CLS]",
|
46 |
+
"do_basic_tokenize": true,
|
47 |
+
"do_lower_case": true,
|
48 |
+
"mask_token": "[MASK]",
|
49 |
+
"max_length": 512,
|
50 |
+
"model_max_length": 1000000000000000019884624838656,
|
51 |
+
"never_split": null,
|
52 |
+
"pad_to_multiple_of": null,
|
53 |
+
"pad_token": "[PAD]",
|
54 |
+
"pad_token_type_id": 0,
|
55 |
+
"padding_side": "right",
|
56 |
+
"sep_token": "[SEP]",
|
57 |
+
"stride": 0,
|
58 |
+
"strip_accents": null,
|
59 |
+
"tokenize_chinese_chars": true,
|
60 |
+
"tokenizer_class": "BertTokenizer",
|
61 |
+
"truncation_side": "right",
|
62 |
+
"truncation_strategy": "longest_first",
|
63 |
+
"unk_token": "[UNK]"
|
64 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|